Cargando…

Immunoelectron microscopic localization of neural cell adhesion molecules (L1, N-CAM, and myelin-associated glycoprotein) in regenerating adult mouse sciatic nerve

The localization of the neural cell adhesion molecules L1, N-CAM, and the myelin-associated glycoprotein was studied by pre- and postembedding staining procedures at the light and electron microscopic levels in transected and crushed adult mouse sciatic nerve. During the first 2-6 d after transectio...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1988
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2115039/
https://www.ncbi.nlm.nih.gov/pubmed/2453520
_version_ 1782140562599575552
collection PubMed
description The localization of the neural cell adhesion molecules L1, N-CAM, and the myelin-associated glycoprotein was studied by pre- and postembedding staining procedures at the light and electron microscopic levels in transected and crushed adult mouse sciatic nerve. During the first 2-6 d after transection, myelinated and nonmyelinated axons degenerated in the distal part of the proximal stump close to the transection site and over the entire length of the distal part of the transected nerve. During this time, regrowing axons were seen only in the proximal, but not in the distal nerve stump. In most cases L1 and N- CAM remained detectable at cell contacts between nonmyelinating Schwann cells and degenerating axons as long as these were still morphologically intact. Similarly, myelin-associated glycoprotein remained detectable in the periaxonal area of the degenerating myelinated axons. During and after degeneration of axons, nonmyelinating Schwann cells formed slender processes which were L1 and N-CAM positive. They resembled small-diameter axons but could be unequivocally identified as Schwann cells by chronical denervation. Unlike the nonmyelinating Schwann cells, only few myelinating ones expressed L1 and N-CAM. At the cut ends of the nerve stumps a cap developed (more at the proximal than at the distal stump) that contained S-100-negative and fibronectin-positive fibroblast-like cells. Most of these cells were N-CAM positive but always L1 negative. Growth cones and regrowing axons expressed N-CAM and L1 at contact sites with these cells. Regrowing axons of small diameter were L1 and N- CAM positive where they made contact with each other or with Schwann cells, while large-diameter axons were only poorly antigen positive or completely negative. 14 d after transection, when regrowing axons were seen in the distal part of the transected nerve, regrowing axons made L1- and N-CAM-positive contacts with Schwann cells. When contacting basement membrane, axons were rarely found to express L1 and N-CAM. Most, if not all, Schwann cells associated with degenerating myelin expressed L1 and N-CAM. In crushed nerves, the immunostaining pattern was essentially the same as in the cut nerve. During formation of myelin, the sequence of adhesion molecule expression was the same as during development: L1 disappeared and N-CAM was reduced on myelinating Schwann cells and axons after the Schwann cell process had turned approximately 1.5 loops around the axon. Myelin-associated glycoprotein then appeared both periaxonally and on the turning loops of Schwann cells in the uncompacted myelin.(ABSTRACT TRUNCATED AT 400 WORDS)
format Text
id pubmed-2115039
institution National Center for Biotechnology Information
language English
publishDate 1988
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-21150392008-05-01 Immunoelectron microscopic localization of neural cell adhesion molecules (L1, N-CAM, and myelin-associated glycoprotein) in regenerating adult mouse sciatic nerve J Cell Biol Articles The localization of the neural cell adhesion molecules L1, N-CAM, and the myelin-associated glycoprotein was studied by pre- and postembedding staining procedures at the light and electron microscopic levels in transected and crushed adult mouse sciatic nerve. During the first 2-6 d after transection, myelinated and nonmyelinated axons degenerated in the distal part of the proximal stump close to the transection site and over the entire length of the distal part of the transected nerve. During this time, regrowing axons were seen only in the proximal, but not in the distal nerve stump. In most cases L1 and N- CAM remained detectable at cell contacts between nonmyelinating Schwann cells and degenerating axons as long as these were still morphologically intact. Similarly, myelin-associated glycoprotein remained detectable in the periaxonal area of the degenerating myelinated axons. During and after degeneration of axons, nonmyelinating Schwann cells formed slender processes which were L1 and N-CAM positive. They resembled small-diameter axons but could be unequivocally identified as Schwann cells by chronical denervation. Unlike the nonmyelinating Schwann cells, only few myelinating ones expressed L1 and N-CAM. At the cut ends of the nerve stumps a cap developed (more at the proximal than at the distal stump) that contained S-100-negative and fibronectin-positive fibroblast-like cells. Most of these cells were N-CAM positive but always L1 negative. Growth cones and regrowing axons expressed N-CAM and L1 at contact sites with these cells. Regrowing axons of small diameter were L1 and N- CAM positive where they made contact with each other or with Schwann cells, while large-diameter axons were only poorly antigen positive or completely negative. 14 d after transection, when regrowing axons were seen in the distal part of the transected nerve, regrowing axons made L1- and N-CAM-positive contacts with Schwann cells. When contacting basement membrane, axons were rarely found to express L1 and N-CAM. Most, if not all, Schwann cells associated with degenerating myelin expressed L1 and N-CAM. In crushed nerves, the immunostaining pattern was essentially the same as in the cut nerve. During formation of myelin, the sequence of adhesion molecule expression was the same as during development: L1 disappeared and N-CAM was reduced on myelinating Schwann cells and axons after the Schwann cell process had turned approximately 1.5 loops around the axon. Myelin-associated glycoprotein then appeared both periaxonally and on the turning loops of Schwann cells in the uncompacted myelin.(ABSTRACT TRUNCATED AT 400 WORDS) The Rockefeller University Press 1988-05-01 /pmc/articles/PMC2115039/ /pubmed/2453520 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
Immunoelectron microscopic localization of neural cell adhesion molecules (L1, N-CAM, and myelin-associated glycoprotein) in regenerating adult mouse sciatic nerve
title Immunoelectron microscopic localization of neural cell adhesion molecules (L1, N-CAM, and myelin-associated glycoprotein) in regenerating adult mouse sciatic nerve
title_full Immunoelectron microscopic localization of neural cell adhesion molecules (L1, N-CAM, and myelin-associated glycoprotein) in regenerating adult mouse sciatic nerve
title_fullStr Immunoelectron microscopic localization of neural cell adhesion molecules (L1, N-CAM, and myelin-associated glycoprotein) in regenerating adult mouse sciatic nerve
title_full_unstemmed Immunoelectron microscopic localization of neural cell adhesion molecules (L1, N-CAM, and myelin-associated glycoprotein) in regenerating adult mouse sciatic nerve
title_short Immunoelectron microscopic localization of neural cell adhesion molecules (L1, N-CAM, and myelin-associated glycoprotein) in regenerating adult mouse sciatic nerve
title_sort immunoelectron microscopic localization of neural cell adhesion molecules (l1, n-cam, and myelin-associated glycoprotein) in regenerating adult mouse sciatic nerve
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2115039/
https://www.ncbi.nlm.nih.gov/pubmed/2453520