Cargando…
A role for gangliosides in astroglial cell differentiation in vitro
Rat cerebral astroglial cells in culture display specific morphological and biochemical behaviors in response to exogenously added gangliosides. To examine a potential function for endogenous gangliosides in the processes of astroglial cell differentiation, we have used the B subunit of cholera toxi...
Formato: | Texto |
---|---|
Lenguaje: | English |
Publicado: |
The Rockefeller University Press
1988
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2115083/ https://www.ncbi.nlm.nih.gov/pubmed/2831235 |
_version_ | 1782140573125181440 |
---|---|
collection | PubMed |
description | Rat cerebral astroglial cells in culture display specific morphological and biochemical behaviors in response to exogenously added gangliosides. To examine a potential function for endogenous gangliosides in the processes of astroglial cell differentiation, we have used the B subunit of cholera toxin as a ganglioside-specific probe. The B subunit, which is multivalent and binds specifically to GM1 ganglioside on the cell surface, induced a classical star-shaped (stellate) morphology in the astroglial cells and inhibited DNA synthesis in a dose-dependent manner. The morphological response was massive and complete within 2 h, with an ED50 of 0.8 nM, and appeared to depend on the direct interaction of the B subunit with GM1 on the cell surface. A B subunit-evoked inhibition of DNA synthesis and cell division (ED50 = 0.2 nM) was observed when the cells were stimulated with defined mitogens, such as epidermal growth factor and basic fibroblast growth factor. Maximal inhibition approached 80% within 24 h. The effects of the B subunit were unrelated to increases in cAMP. These observations, taken together with previous studies, demonstrate that both endogenously occurring plasma membrane gangliosides and exogenously supplied gangliosides can influence the differentiative state (as judged by morphological and growth behaviors) of astroglial cells in vitro. |
format | Text |
id | pubmed-2115083 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 1988 |
publisher | The Rockefeller University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-21150832008-05-01 A role for gangliosides in astroglial cell differentiation in vitro J Cell Biol Articles Rat cerebral astroglial cells in culture display specific morphological and biochemical behaviors in response to exogenously added gangliosides. To examine a potential function for endogenous gangliosides in the processes of astroglial cell differentiation, we have used the B subunit of cholera toxin as a ganglioside-specific probe. The B subunit, which is multivalent and binds specifically to GM1 ganglioside on the cell surface, induced a classical star-shaped (stellate) morphology in the astroglial cells and inhibited DNA synthesis in a dose-dependent manner. The morphological response was massive and complete within 2 h, with an ED50 of 0.8 nM, and appeared to depend on the direct interaction of the B subunit with GM1 on the cell surface. A B subunit-evoked inhibition of DNA synthesis and cell division (ED50 = 0.2 nM) was observed when the cells were stimulated with defined mitogens, such as epidermal growth factor and basic fibroblast growth factor. Maximal inhibition approached 80% within 24 h. The effects of the B subunit were unrelated to increases in cAMP. These observations, taken together with previous studies, demonstrate that both endogenously occurring plasma membrane gangliosides and exogenously supplied gangliosides can influence the differentiative state (as judged by morphological and growth behaviors) of astroglial cells in vitro. The Rockefeller University Press 1988-03-01 /pmc/articles/PMC2115083/ /pubmed/2831235 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/). |
spellingShingle | Articles A role for gangliosides in astroglial cell differentiation in vitro |
title | A role for gangliosides in astroglial cell differentiation in vitro |
title_full | A role for gangliosides in astroglial cell differentiation in vitro |
title_fullStr | A role for gangliosides in astroglial cell differentiation in vitro |
title_full_unstemmed | A role for gangliosides in astroglial cell differentiation in vitro |
title_short | A role for gangliosides in astroglial cell differentiation in vitro |
title_sort | role for gangliosides in astroglial cell differentiation in vitro |
topic | Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2115083/ https://www.ncbi.nlm.nih.gov/pubmed/2831235 |