Cargando…
Inhibition of in vitro tumor cell invasion by Arg-Gly-Asp-containing synthetic peptides [published erratum appears in J Cell Biol 1989 Jun;108(6):following 2546]
The interaction of cells with extracellular matrix components such as fibronectin, vitronectin, and type I collagen has been shown to be mediated through a family of cell-surface receptors that specifically recognize an arginine-glycine-aspartic acid (RGD) amino acid sequence within each protein. Sy...
Formato: | Texto |
---|---|
Lenguaje: | English |
Publicado: |
The Rockefeller University Press
1988
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2115099/ https://www.ncbi.nlm.nih.gov/pubmed/2450101 |
_version_ | 1782140576926269440 |
---|---|
collection | PubMed |
description | The interaction of cells with extracellular matrix components such as fibronectin, vitronectin, and type I collagen has been shown to be mediated through a family of cell-surface receptors that specifically recognize an arginine-glycine-aspartic acid (RGD) amino acid sequence within each protein. Synthetic peptides containing the RGD sequence can inhibit these receptor-ligand interactions. Here, we use novel RGD- containing synthetic peptides with different inhibition properties to investigate the role of the various RGD receptors in tumor cell invasion. The RGD-containing peptides used include peptides that inhibit the attachment of cells to fibronectin and vitronectin, a peptide that inhibits attachment to fibronectin but not to vitronectin, a cyclic peptide with the opposite specificity, and a peptide, GRGDTP, that inhibits attachment to type I collagen in addition to inhibiting attachment to fibronectin and vitronectin. The penetration of two human melanoma cell lines and a glioblastoma cell line through the human amniotic basement membrane and its underlying stroma was inhibited by all of the RGD-containing peptides except for the one that inhibits only the vitronectin attachment. Various control peptides lacking RGD showed essentially no inhibition. This inhibitory effect on cell invasion was dose-dependent and nontoxic. A hexapeptide, GRGDTP, that inhibits the attachment of cells to type I collagen in addition to inhibiting fibronectin- and vitronectin-mediated attachment was more inhibitory than those RGD peptides that inhibit only fibronectin and vitronectin attachment. Analysis of the location of these cells that were prevented from invading indicated that they attached to the amniotic basement membrane but did not proceed further into the tissue. These results suggest that interactions between RGD-containing extracellular matrix adhesion proteins and cells are necessary for cell invasion through tissues and that fibronectin and type I collagen are important for this process. |
format | Text |
id | pubmed-2115099 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 1988 |
publisher | The Rockefeller University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-21150992008-05-01 Inhibition of in vitro tumor cell invasion by Arg-Gly-Asp-containing synthetic peptides [published erratum appears in J Cell Biol 1989 Jun;108(6):following 2546] J Cell Biol Articles The interaction of cells with extracellular matrix components such as fibronectin, vitronectin, and type I collagen has been shown to be mediated through a family of cell-surface receptors that specifically recognize an arginine-glycine-aspartic acid (RGD) amino acid sequence within each protein. Synthetic peptides containing the RGD sequence can inhibit these receptor-ligand interactions. Here, we use novel RGD- containing synthetic peptides with different inhibition properties to investigate the role of the various RGD receptors in tumor cell invasion. The RGD-containing peptides used include peptides that inhibit the attachment of cells to fibronectin and vitronectin, a peptide that inhibits attachment to fibronectin but not to vitronectin, a cyclic peptide with the opposite specificity, and a peptide, GRGDTP, that inhibits attachment to type I collagen in addition to inhibiting attachment to fibronectin and vitronectin. The penetration of two human melanoma cell lines and a glioblastoma cell line through the human amniotic basement membrane and its underlying stroma was inhibited by all of the RGD-containing peptides except for the one that inhibits only the vitronectin attachment. Various control peptides lacking RGD showed essentially no inhibition. This inhibitory effect on cell invasion was dose-dependent and nontoxic. A hexapeptide, GRGDTP, that inhibits the attachment of cells to type I collagen in addition to inhibiting fibronectin- and vitronectin-mediated attachment was more inhibitory than those RGD peptides that inhibit only fibronectin and vitronectin attachment. Analysis of the location of these cells that were prevented from invading indicated that they attached to the amniotic basement membrane but did not proceed further into the tissue. These results suggest that interactions between RGD-containing extracellular matrix adhesion proteins and cells are necessary for cell invasion through tissues and that fibronectin and type I collagen are important for this process. The Rockefeller University Press 1988-03-01 /pmc/articles/PMC2115099/ /pubmed/2450101 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/). |
spellingShingle | Articles Inhibition of in vitro tumor cell invasion by Arg-Gly-Asp-containing synthetic peptides [published erratum appears in J Cell Biol 1989 Jun;108(6):following 2546] |
title | Inhibition of in vitro tumor cell invasion by Arg-Gly-Asp-containing synthetic peptides [published erratum appears in J Cell Biol 1989 Jun;108(6):following 2546] |
title_full | Inhibition of in vitro tumor cell invasion by Arg-Gly-Asp-containing synthetic peptides [published erratum appears in J Cell Biol 1989 Jun;108(6):following 2546] |
title_fullStr | Inhibition of in vitro tumor cell invasion by Arg-Gly-Asp-containing synthetic peptides [published erratum appears in J Cell Biol 1989 Jun;108(6):following 2546] |
title_full_unstemmed | Inhibition of in vitro tumor cell invasion by Arg-Gly-Asp-containing synthetic peptides [published erratum appears in J Cell Biol 1989 Jun;108(6):following 2546] |
title_short | Inhibition of in vitro tumor cell invasion by Arg-Gly-Asp-containing synthetic peptides [published erratum appears in J Cell Biol 1989 Jun;108(6):following 2546] |
title_sort | inhibition of in vitro tumor cell invasion by arg-gly-asp-containing synthetic peptides [published erratum appears in j cell biol 1989 jun;108(6):following 2546] |
topic | Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2115099/ https://www.ncbi.nlm.nih.gov/pubmed/2450101 |