Cargando…

Light and electron microscopic studies on the localization of hyaluronic acid in developing rat cerebellum

The hyaluronic acid-binding region was prepared by trypsin digestion of chondroitin sulfate proteoglycan aggregate from the Swarm rat chondrosarcoma, and biotinylated in the presence of hyaluronic acid and link protein. After isolation by gel filtration and HPLC in 4 M guanidine HCl, the biotinylate...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1988
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2115103/
https://www.ncbi.nlm.nih.gov/pubmed/2450100
Descripción
Sumario:The hyaluronic acid-binding region was prepared by trypsin digestion of chondroitin sulfate proteoglycan aggregate from the Swarm rat chondrosarcoma, and biotinylated in the presence of hyaluronic acid and link protein. After isolation by gel filtration and HPLC in 4 M guanidine HCl, the biotinylated hyaluronic acid-binding region was used, in conjunction with avidin-peroxidase, as a specific probe for the light and electron microscopic localization of hyaluronic acid in developing and mature rat cerebellum. At 1 w postnatal, there is strong staining of extracellular hyaluronic acid in the presumptive white matter, in the internal granule cell layer, and as a dense band at the base of the molecular layer, surrounding the parallel fibers. This staining moves progressively towards the pial surface during the second postnatal week, and extracellular staining remains predominant through postnatal week three. In adult brain, there is no significant extracellular staining of hyaluronic acid, which is most apparent in the granule cell cytoplasm, and intra-axonally in parallel fibers and some myelinated axons. The white matter is also unstained in adult brain, and no staining was seen in Purkinje cell bodies or dendrites at any age. The localization of hyaluronic acid and its developmental changes are very similar to that previously found in immunocytochemical studies of the chondroitin sulfate proteoglycan in nervous tissue (Aquino, D. A., R. U. Margolis, and R. K. Margolis. 1984. J. Cell Biol. 99:1117-1129; Aquino, D. A., R. U. Margolis, and R. K. Margolis. J. Cell Biol. 99:1130-1139), and to recent results from studies using monoclonal antibodies to the hyaluronic acid-binding region and link protein. The presence of brain hyaluronic acid in the form of aggregates with chondroitin sulfate proteoglycans would be consistent with their similar localizations and coordinate developmental changes.