Cargando…

Direct demonstration of actin filament annealing in vitro

Direct electron microscopic examination confirms that short actin filaments rapidly anneal end-to-end in vitro, leading over time to an increase in filament length at steady state. During annealing of mixtures of native unlabeled filaments and glutaraldehyde-fixed filaments labeled with myosin subfr...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1988
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2115120/
https://www.ncbi.nlm.nih.gov/pubmed/3384850
_version_ 1782140581876596736
collection PubMed
description Direct electron microscopic examination confirms that short actin filaments rapidly anneal end-to-end in vitro, leading over time to an increase in filament length at steady state. During annealing of mixtures of native unlabeled filaments and glutaraldehyde-fixed filaments labeled with myosin subfragment-1, the structural polarity within heteropolymers is conserved absolutely. Annealing does not appear to require either ATP hydrolysis or the presence of exogenous actin monomers, suggesting that joining occurs through the direct association of filament ends. During recovery from sonication the initial rate of annealing is consistent with a second-order reaction involving the collision of two filament ends with an apparent annealing rate constant of 10(7) M-1s-1. This rapid phase lasts less than 10 s and is followed by a slow phase lasting minutes to hours. Annealing is calculated to contribute minimally to filament elongation during the initial stages of self-assembly. However, the rapid rate of annealing of sonicated fixed filaments observed in vitro suggests that it may be an efficient mechanism for repairing breaks in filaments and that annealing together with polymer-severing mechanisms may contribute significantly to the dynamics and function of actin filaments in vivo.
format Text
id pubmed-2115120
institution National Center for Biotechnology Information
language English
publishDate 1988
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-21151202008-05-01 Direct demonstration of actin filament annealing in vitro J Cell Biol Articles Direct electron microscopic examination confirms that short actin filaments rapidly anneal end-to-end in vitro, leading over time to an increase in filament length at steady state. During annealing of mixtures of native unlabeled filaments and glutaraldehyde-fixed filaments labeled with myosin subfragment-1, the structural polarity within heteropolymers is conserved absolutely. Annealing does not appear to require either ATP hydrolysis or the presence of exogenous actin monomers, suggesting that joining occurs through the direct association of filament ends. During recovery from sonication the initial rate of annealing is consistent with a second-order reaction involving the collision of two filament ends with an apparent annealing rate constant of 10(7) M-1s-1. This rapid phase lasts less than 10 s and is followed by a slow phase lasting minutes to hours. Annealing is calculated to contribute minimally to filament elongation during the initial stages of self-assembly. However, the rapid rate of annealing of sonicated fixed filaments observed in vitro suggests that it may be an efficient mechanism for repairing breaks in filaments and that annealing together with polymer-severing mechanisms may contribute significantly to the dynamics and function of actin filaments in vivo. The Rockefeller University Press 1988-06-01 /pmc/articles/PMC2115120/ /pubmed/3384850 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
Direct demonstration of actin filament annealing in vitro
title Direct demonstration of actin filament annealing in vitro
title_full Direct demonstration of actin filament annealing in vitro
title_fullStr Direct demonstration of actin filament annealing in vitro
title_full_unstemmed Direct demonstration of actin filament annealing in vitro
title_short Direct demonstration of actin filament annealing in vitro
title_sort direct demonstration of actin filament annealing in vitro
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2115120/
https://www.ncbi.nlm.nih.gov/pubmed/3384850