Cargando…

Efficient targeting to storage granules of human proinsulins with altered propeptide domain

In neuronal and endocrine cells, peptide hormones are selectively segregated into storage granules, while other proteins are exported continuously without storage. Sorting of hormones by cellular machinery involves the recognition of specific structural domains on prohormone molecules. Since the pro...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1988
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2115124/
https://www.ncbi.nlm.nih.gov/pubmed/2838491
_version_ 1782140582799343616
collection PubMed
description In neuronal and endocrine cells, peptide hormones are selectively segregated into storage granules, while other proteins are exported continuously without storage. Sorting of hormones by cellular machinery involves the recognition of specific structural domains on prohormone molecules. Since the propeptide of insulin is known to play an important role in its three-dimensional structure, it is reasonable to speculate that targeting of proinsulin to storage granules would require a functional connecting peptide. To test this hypothesis, we constructed two mutations in human proinsulin with different predicted structures. In one mutation, Ins delta C, the entire C peptide was deleted, resulting in an altered insulin in which the B and the A chains are joined contiguously. In the other mutation, Ins/IGF, the C peptide of proinsulin was replaced with the unrelated 12-amino acid connecting peptide of human insulin-like growth factor-I; this substitution should permit correct folding of the B and A chains to form a tertiary structure similar to that of proinsulin. By several biochemical and morphological criteria, we found that Ins/IGF is efficiently targeted to storage granules, suggesting that the C peptide of proinsulin does not contain necessary sorting information. Unexpectedly, Ins delta C, which presumably cannot fold properly, is also targeted to granules at a high efficiency. These results imply that either the targeting machinery can tolerate changes in the tertiary structure of transported proteins, or that the B and A chains of insulin can form a relatively intact three-dimensional structure even in the absence of C peptide.
format Text
id pubmed-2115124
institution National Center for Biotechnology Information
language English
publishDate 1988
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-21151242008-05-01 Efficient targeting to storage granules of human proinsulins with altered propeptide domain J Cell Biol Articles In neuronal and endocrine cells, peptide hormones are selectively segregated into storage granules, while other proteins are exported continuously without storage. Sorting of hormones by cellular machinery involves the recognition of specific structural domains on prohormone molecules. Since the propeptide of insulin is known to play an important role in its three-dimensional structure, it is reasonable to speculate that targeting of proinsulin to storage granules would require a functional connecting peptide. To test this hypothesis, we constructed two mutations in human proinsulin with different predicted structures. In one mutation, Ins delta C, the entire C peptide was deleted, resulting in an altered insulin in which the B and the A chains are joined contiguously. In the other mutation, Ins/IGF, the C peptide of proinsulin was replaced with the unrelated 12-amino acid connecting peptide of human insulin-like growth factor-I; this substitution should permit correct folding of the B and A chains to form a tertiary structure similar to that of proinsulin. By several biochemical and morphological criteria, we found that Ins/IGF is efficiently targeted to storage granules, suggesting that the C peptide of proinsulin does not contain necessary sorting information. Unexpectedly, Ins delta C, which presumably cannot fold properly, is also targeted to granules at a high efficiency. These results imply that either the targeting machinery can tolerate changes in the tertiary structure of transported proteins, or that the B and A chains of insulin can form a relatively intact three-dimensional structure even in the absence of C peptide. The Rockefeller University Press 1988-06-01 /pmc/articles/PMC2115124/ /pubmed/2838491 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
Efficient targeting to storage granules of human proinsulins with altered propeptide domain
title Efficient targeting to storage granules of human proinsulins with altered propeptide domain
title_full Efficient targeting to storage granules of human proinsulins with altered propeptide domain
title_fullStr Efficient targeting to storage granules of human proinsulins with altered propeptide domain
title_full_unstemmed Efficient targeting to storage granules of human proinsulins with altered propeptide domain
title_short Efficient targeting to storage granules of human proinsulins with altered propeptide domain
title_sort efficient targeting to storage granules of human proinsulins with altered propeptide domain
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2115124/
https://www.ncbi.nlm.nih.gov/pubmed/2838491