Cargando…

The pathways of endocytosed transferrin and secretory protein are connected in the trans-Golgi reticulum

We used a conjugate of transferrin and horseradish peroxidase (Tf/HRP) to label the intracellular transferrin receptor route in the human hepatoma cell line HepG2. The recycling kinetics of [125I]Tf/HRP were similar to those of unmodified [125I]Tf, implying identical routes for both ligands. 3,3...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1988
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2115149/
https://www.ncbi.nlm.nih.gov/pubmed/3260238
_version_ 1782140588709117952
collection PubMed
description We used a conjugate of transferrin and horseradish peroxidase (Tf/HRP) to label the intracellular transferrin receptor route in the human hepatoma cell line HepG2. The recycling kinetics of [125I]Tf/HRP were similar to those of unmodified [125I]Tf, implying identical routes for both ligands. 3,3'Diaminobenzidine (DAB)-cytochemistry was performed on post-nuclear supernatants of homogenates of cells which were incubated with both Tf/HRP and [125I]Tf, and caused two different effects: (a) the equilibrium density of [125I]Tf containing microsomes in a Percoll density gradient was increased, and (b) the amount of immunoprecipitable [125I]Tf from density-shifted lysed microsomes was only 20% of that of nonDAB treated microsomes. The whole biosynthetic route of alpha 1-antitrypsin (AT), a typical secretory glycoprotein in HepG2 cells, was labeled during a 60-min incubation with [35S]methionine. DAB cytochemistry was performed on post-nuclear supernatants of homogenates of cells which were also incubated with Tf/HRP. DAB cytochemistry caused approximately 40% of microsome- associated "complex" glycosylated [35S]alpha 1-antitrypsin ([35S]c-AT) to shift in a Percoll density gradient. Only part of the density shifted [35S]c-AT could be recovered by immunoprecipitation. A maximum effect was measured already after 10 min of Tf/HRP uptake. The density distribution of the "high mannose" glycosylated form of 35S-alpha 1- anti-trypsin [( 35S]hm-AT) was not affected by Tf/HRP. If in addition to Tf/HRP also an excess of non-conjugated transferrin was present in the medium, [35S]c-AT was not accessible for Tf/HRP, showing the involvement of the transferrin receptor (TfR) in the process. Furthermore, we show that if Tf/HRP and [35S]c-AT were located in different vesicles, the density distribution of [35S]c-AT was not affected by DAB-cytochemistry. Pulse-labeling with [35S]methionine was used to show that [35S]c-AT became accessible to endocytosed Tf/HRP minutes after acquirement of the complex configuration. A common intracellular localization of endocytosed Tf/HRP and secretory protein could be confirmed by immuno-electron microscopy: cryosections labeled with anti-albumin (protein A-colloidal gold) as well as DAB reaction product showed double-labeling in the trans-Golgi reticulum.
format Text
id pubmed-2115149
institution National Center for Biotechnology Information
language English
publishDate 1988
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-21151492008-05-01 The pathways of endocytosed transferrin and secretory protein are connected in the trans-Golgi reticulum J Cell Biol Articles We used a conjugate of transferrin and horseradish peroxidase (Tf/HRP) to label the intracellular transferrin receptor route in the human hepatoma cell line HepG2. The recycling kinetics of [125I]Tf/HRP were similar to those of unmodified [125I]Tf, implying identical routes for both ligands. 3,3'Diaminobenzidine (DAB)-cytochemistry was performed on post-nuclear supernatants of homogenates of cells which were incubated with both Tf/HRP and [125I]Tf, and caused two different effects: (a) the equilibrium density of [125I]Tf containing microsomes in a Percoll density gradient was increased, and (b) the amount of immunoprecipitable [125I]Tf from density-shifted lysed microsomes was only 20% of that of nonDAB treated microsomes. The whole biosynthetic route of alpha 1-antitrypsin (AT), a typical secretory glycoprotein in HepG2 cells, was labeled during a 60-min incubation with [35S]methionine. DAB cytochemistry was performed on post-nuclear supernatants of homogenates of cells which were also incubated with Tf/HRP. DAB cytochemistry caused approximately 40% of microsome- associated "complex" glycosylated [35S]alpha 1-antitrypsin ([35S]c-AT) to shift in a Percoll density gradient. Only part of the density shifted [35S]c-AT could be recovered by immunoprecipitation. A maximum effect was measured already after 10 min of Tf/HRP uptake. The density distribution of the "high mannose" glycosylated form of 35S-alpha 1- anti-trypsin [( 35S]hm-AT) was not affected by Tf/HRP. If in addition to Tf/HRP also an excess of non-conjugated transferrin was present in the medium, [35S]c-AT was not accessible for Tf/HRP, showing the involvement of the transferrin receptor (TfR) in the process. Furthermore, we show that if Tf/HRP and [35S]c-AT were located in different vesicles, the density distribution of [35S]c-AT was not affected by DAB-cytochemistry. Pulse-labeling with [35S]methionine was used to show that [35S]c-AT became accessible to endocytosed Tf/HRP minutes after acquirement of the complex configuration. A common intracellular localization of endocytosed Tf/HRP and secretory protein could be confirmed by immuno-electron microscopy: cryosections labeled with anti-albumin (protein A-colloidal gold) as well as DAB reaction product showed double-labeling in the trans-Golgi reticulum. The Rockefeller University Press 1988-06-01 /pmc/articles/PMC2115149/ /pubmed/3260238 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
The pathways of endocytosed transferrin and secretory protein are connected in the trans-Golgi reticulum
title The pathways of endocytosed transferrin and secretory protein are connected in the trans-Golgi reticulum
title_full The pathways of endocytosed transferrin and secretory protein are connected in the trans-Golgi reticulum
title_fullStr The pathways of endocytosed transferrin and secretory protein are connected in the trans-Golgi reticulum
title_full_unstemmed The pathways of endocytosed transferrin and secretory protein are connected in the trans-Golgi reticulum
title_short The pathways of endocytosed transferrin and secretory protein are connected in the trans-Golgi reticulum
title_sort pathways of endocytosed transferrin and secretory protein are connected in the trans-golgi reticulum
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2115149/
https://www.ncbi.nlm.nih.gov/pubmed/3260238