Cargando…

Molecular basis of growth cone adhesion: anchoring of adheron- containing filaments at adhesive loci

Adhesive contacts made by filopodia of neuronal growth cones are essential for proper neurite elongation and may have a role in the formation of synaptic junctions. Previously we described the appearance of filamentous materials extending from growth cone surfaces that seem to be associated with the...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1988
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2115151/
https://www.ncbi.nlm.nih.gov/pubmed/3384855
_version_ 1782140589166297088
collection PubMed
description Adhesive contacts made by filopodia of neuronal growth cones are essential for proper neurite elongation and may have a role in the formation of synaptic junctions. Previously we described the appearance of filamentous materials extending from growth cone surfaces that seem to be associated with the strongly adhesive behavior of filopodia (Tsui, H.-C., K. L. Lankford, and W. L. Klein. 1985. Proc. Natl. Acad. Sci. USA. 82:8256-8260). Here, we have used immunogold labeling to determine whether known adhesive molecules might be localized at points of adhesion and possibly be constituents of the filamentous material. Antibodies to an adhesive molecule (neural cell adhesion molecule [N- CAM]) and to an adhesive macromolecular complex of proteins and proteoglycans (adheron) were localized at the EM level in whole mounts of cultured avian retina cells. Labeling of fixed cells showed that N- CAM and adheron molecules were both present on growth cones and on filopodia. However, filamentous materials extending from the cell surface were labeled with anti-adheron but not with anti-N-CAM. If cells were labeled before fixation, patches of anti-N-CAM labeling occurred in random areas over the growth cones, but adheron antibodies concentrated at points of apparent adhesion. Particularly dense clustering of anti-adheron occurred at individual filopodial tips and at points of contact between pairs of filopodia. The different patterns of labeling imply that N-CAMS do not associate with the main antigenic components of adheron on the membrane surface. Most importantly, the data indicate the N-CAMs were mobile in the membrane but that constituents of adherons were anchored at adhesive loci. An appealing hypothesis is that molecules found in adheron preparations have an important role in establishing the adhesive junctions formed by growth cone filopodia.
format Text
id pubmed-2115151
institution National Center for Biotechnology Information
language English
publishDate 1988
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-21151512008-05-01 Molecular basis of growth cone adhesion: anchoring of adheron- containing filaments at adhesive loci J Cell Biol Articles Adhesive contacts made by filopodia of neuronal growth cones are essential for proper neurite elongation and may have a role in the formation of synaptic junctions. Previously we described the appearance of filamentous materials extending from growth cone surfaces that seem to be associated with the strongly adhesive behavior of filopodia (Tsui, H.-C., K. L. Lankford, and W. L. Klein. 1985. Proc. Natl. Acad. Sci. USA. 82:8256-8260). Here, we have used immunogold labeling to determine whether known adhesive molecules might be localized at points of adhesion and possibly be constituents of the filamentous material. Antibodies to an adhesive molecule (neural cell adhesion molecule [N- CAM]) and to an adhesive macromolecular complex of proteins and proteoglycans (adheron) were localized at the EM level in whole mounts of cultured avian retina cells. Labeling of fixed cells showed that N- CAM and adheron molecules were both present on growth cones and on filopodia. However, filamentous materials extending from the cell surface were labeled with anti-adheron but not with anti-N-CAM. If cells were labeled before fixation, patches of anti-N-CAM labeling occurred in random areas over the growth cones, but adheron antibodies concentrated at points of apparent adhesion. Particularly dense clustering of anti-adheron occurred at individual filopodial tips and at points of contact between pairs of filopodia. The different patterns of labeling imply that N-CAMS do not associate with the main antigenic components of adheron on the membrane surface. Most importantly, the data indicate the N-CAMs were mobile in the membrane but that constituents of adherons were anchored at adhesive loci. An appealing hypothesis is that molecules found in adheron preparations have an important role in establishing the adhesive junctions formed by growth cone filopodia. The Rockefeller University Press 1988-06-01 /pmc/articles/PMC2115151/ /pubmed/3384855 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
Molecular basis of growth cone adhesion: anchoring of adheron- containing filaments at adhesive loci
title Molecular basis of growth cone adhesion: anchoring of adheron- containing filaments at adhesive loci
title_full Molecular basis of growth cone adhesion: anchoring of adheron- containing filaments at adhesive loci
title_fullStr Molecular basis of growth cone adhesion: anchoring of adheron- containing filaments at adhesive loci
title_full_unstemmed Molecular basis of growth cone adhesion: anchoring of adheron- containing filaments at adhesive loci
title_short Molecular basis of growth cone adhesion: anchoring of adheron- containing filaments at adhesive loci
title_sort molecular basis of growth cone adhesion: anchoring of adheron- containing filaments at adhesive loci
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2115151/
https://www.ncbi.nlm.nih.gov/pubmed/3384855