Cargando…
Dissection of the asynchronous transport of intestinal microvillar hydrolases to the cell surface
Novel subcellular fractionation procedures and pulse-chase techniques were used to study the intracellular transport of the microvillar membrane hydrolases sucrase-isomaltase and dipeptidylpeptidase IV in the differentiated colon adenocarcinoma cell line Caco-2. The overall rate of transport to the...
Formato: | Texto |
---|---|
Lenguaje: | English |
Publicado: |
The Rockefeller University Press
1988
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2115157/ https://www.ncbi.nlm.nih.gov/pubmed/2898478 |
Sumario: | Novel subcellular fractionation procedures and pulse-chase techniques were used to study the intracellular transport of the microvillar membrane hydrolases sucrase-isomaltase and dipeptidylpeptidase IV in the differentiated colon adenocarcinoma cell line Caco-2. The overall rate of transport to the cell surface was two fold faster for dipeptidylpeptidase IV than for sucrase-isomaltase, while no significant differences were observed in transport rates from the site of complex glycosylation to the brush border. The delayed arrival of sucrase-isomaltase in the compartment where complex glycosylation occurs was only in part due to exit from the endoplasmic reticulum. A major slow-down could be ascribed to maturation in and transit of this enzyme through the Golgi apparatus. These results suggest that the observed asynchronism is due to more than one rate-limiting step along the rough endoplasmic reticulum to trans-Golgi pathway. |
---|