Cargando…

Integration of membrane proteins into the endoplasmic reticulum requires GTP

We have examined the requirement for ribonucleotides and ribonucleotide triphosphate hydrolysis during early events in the membrane integration of two membrane proteins: the G protein of vesicular stomatitis virus and the hemagglutinin-neuraminidase (HN) glycoprotein of Newcastle disease virus. Both...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1988
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2115162/
https://www.ncbi.nlm.nih.gov/pubmed/2839521
_version_ 1782140591743696896
collection PubMed
description We have examined the requirement for ribonucleotides and ribonucleotide triphosphate hydrolysis during early events in the membrane integration of two membrane proteins: the G protein of vesicular stomatitis virus and the hemagglutinin-neuraminidase (HN) glycoprotein of Newcastle disease virus. Both proteins contain a single transmembrane-spanning segment but are integrated in the membrane with opposite orientations. The G protein has an amino-terminal signal sequence and a stop-transfer sequence located near the carboxy terminus. The HN glycoprotein has a single sequence near the amino terminus that functions as both a signal- sequence and a transmembrane-spanning segment. Membrane insertion was explored using a cell-free system directed by transcribed mRNAs encoding amino-terminal segments of the two proteins. Ribosome-bound nascent polypeptides were assembled, ribonucleotides were removed by gel filtration chromatography, and the ribosomes were incubated with microsomal membranes under conditions of defined ribonucleotide content. Nascent chain insertion into the membrane required the presence of both the signal recognition particle and a functional signal recognition particle receptor. In the absence of ribonucleotides, insertion of nascent membrane proteins was not detected. GTP or nonhydrolyzable GTP analogues promoted efficient insertion, while ATP was comparatively ineffective. Surprisingly, the majority of the HN nascent chain remained ribosome associated after puromycin treatment. Ribosome-associated HN nascent chains remained competent for membrane insertion, while free HN chains were not competent. We conclude that a GTP binding protein performs an essential function during ribosome-dependent insertion of membrane proteins into the endoplasmic reticulum that is unrelated to protein synthesis.
format Text
id pubmed-2115162
institution National Center for Biotechnology Information
language English
publishDate 1988
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-21151622008-05-01 Integration of membrane proteins into the endoplasmic reticulum requires GTP J Cell Biol Articles We have examined the requirement for ribonucleotides and ribonucleotide triphosphate hydrolysis during early events in the membrane integration of two membrane proteins: the G protein of vesicular stomatitis virus and the hemagglutinin-neuraminidase (HN) glycoprotein of Newcastle disease virus. Both proteins contain a single transmembrane-spanning segment but are integrated in the membrane with opposite orientations. The G protein has an amino-terminal signal sequence and a stop-transfer sequence located near the carboxy terminus. The HN glycoprotein has a single sequence near the amino terminus that functions as both a signal- sequence and a transmembrane-spanning segment. Membrane insertion was explored using a cell-free system directed by transcribed mRNAs encoding amino-terminal segments of the two proteins. Ribosome-bound nascent polypeptides were assembled, ribonucleotides were removed by gel filtration chromatography, and the ribosomes were incubated with microsomal membranes under conditions of defined ribonucleotide content. Nascent chain insertion into the membrane required the presence of both the signal recognition particle and a functional signal recognition particle receptor. In the absence of ribonucleotides, insertion of nascent membrane proteins was not detected. GTP or nonhydrolyzable GTP analogues promoted efficient insertion, while ATP was comparatively ineffective. Surprisingly, the majority of the HN nascent chain remained ribosome associated after puromycin treatment. Ribosome-associated HN nascent chains remained competent for membrane insertion, while free HN chains were not competent. We conclude that a GTP binding protein performs an essential function during ribosome-dependent insertion of membrane proteins into the endoplasmic reticulum that is unrelated to protein synthesis. The Rockefeller University Press 1988-07-01 /pmc/articles/PMC2115162/ /pubmed/2839521 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
Integration of membrane proteins into the endoplasmic reticulum requires GTP
title Integration of membrane proteins into the endoplasmic reticulum requires GTP
title_full Integration of membrane proteins into the endoplasmic reticulum requires GTP
title_fullStr Integration of membrane proteins into the endoplasmic reticulum requires GTP
title_full_unstemmed Integration of membrane proteins into the endoplasmic reticulum requires GTP
title_short Integration of membrane proteins into the endoplasmic reticulum requires GTP
title_sort integration of membrane proteins into the endoplasmic reticulum requires gtp
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2115162/
https://www.ncbi.nlm.nih.gov/pubmed/2839521