Cargando…

Posttranslational incorporation of contractile proteins into myofibrils in a cell-free system

The incorporation of newly synthesized protein into myofibrils has been examined in a cell-free system. Myofibrils were added to a reticulocyte lysate after the in vitro translation of muscle-specific poly(A)+RNA. Only a small number of the many synthesized proteins were found to associate with the...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1988
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2115203/
https://www.ncbi.nlm.nih.gov/pubmed/3417763
Descripción
Sumario:The incorporation of newly synthesized protein into myofibrils has been examined in a cell-free system. Myofibrils were added to a reticulocyte lysate after the in vitro translation of muscle-specific poly(A)+RNA. Only a small number of the many synthesized proteins were found to associate with the exogenously added myofibrils. These proteins were all identified as sarcomeric components and had subunit mobilities (Mr) of 200, 140, 95, 86, 43, 38, 35, 25, 23, 20, and 18 kD. The association was rapid (t1/2 less than 15 min) and, for most of the proteins, relatively temperature insensitive. Except for a 43-kD polypeptide, tentatively identified as beta-actin, none of the proteins encoded by brain poly(A)+RNA associated with the myofibrils. When filaments made from purified myosin or actin were used as the "capture" substrates, only thick or thin filament proteins, respectively, were incorporated. Incorporation was substantially reduced when cross-linked myosin filaments were used. These results are compatible with a model in which proteins of the sarcomere are in kinetic equilibrium with homologous proteins in a soluble pool.