Cargando…

Coupling membranes as energy-transmitting cables. II. Cyanobacterial trichomes

Power transmission along trichomes of filamentous cyanobacteria Phormidium uncinatum has been studied with the use of ethylrhodamine fluorescence as a probe for the transmembrane electric potential difference (delta psi). It is found that agents preventing the light- induced delta psi formation (pho...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1988
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2115227/
https://www.ncbi.nlm.nih.gov/pubmed/3138245
_version_ 1782140606765596672
collection PubMed
description Power transmission along trichomes of filamentous cyanobacteria Phormidium uncinatum has been studied with the use of ethylrhodamine fluorescence as a probe for the transmembrane electric potential difference (delta psi). It is found that agents preventing the light- induced delta psi formation (photosynthetic redox chain inhibitor dibromothymoquinone) or dissipating delta psi (uncoupler tetrachlorotrifluoromethylbenzimidazole) strongly decrease the fluorescence of the ethyl-rhodamine-stained trichomes. K+-H+ antiporter nigericin converting delta pH to delta psi increases the fluorescence. These relationships are in agreement with the assumption that ethylrhodamine electrophoretically accumulates inside the cyanobacterial cells. Illumination of a single cell in the P. uncinatum trichome gives rise to quenching of the fluorescence in this cell and usually in one or two neighbor cells, whereas the rest of trichome remains fluorescing. A small light spot (5% of the trichome length) causes an increase in the ethylrhodamine fluorescence not only in the illuminated but also in the nonilluminated parts of the trichome up to the laser-treated cell or its neighbor(s). It is concluded ethylrhodamine can be used to monitor the power transmission which was previously demonstrated by microelectrode studies of the cyanobacterial trichomes. In certain trichomes, several "dark" cells appear during the storage of the trichomes without energy sources. Illumination for several minutes results in dark cells becoming fluorescing. Thus some cells or cell clusters can be reversibly excluded from the lateral delta psi-transmitting system of the trichome, the rest being still electrically connected. This means that filamentous cyanobacteria possess mechanisms to transmit power along the trichome and to switch off this transmission.
format Text
id pubmed-2115227
institution National Center for Biotechnology Information
language English
publishDate 1988
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-21152272008-05-01 Coupling membranes as energy-transmitting cables. II. Cyanobacterial trichomes J Cell Biol Articles Power transmission along trichomes of filamentous cyanobacteria Phormidium uncinatum has been studied with the use of ethylrhodamine fluorescence as a probe for the transmembrane electric potential difference (delta psi). It is found that agents preventing the light- induced delta psi formation (photosynthetic redox chain inhibitor dibromothymoquinone) or dissipating delta psi (uncoupler tetrachlorotrifluoromethylbenzimidazole) strongly decrease the fluorescence of the ethyl-rhodamine-stained trichomes. K+-H+ antiporter nigericin converting delta pH to delta psi increases the fluorescence. These relationships are in agreement with the assumption that ethylrhodamine electrophoretically accumulates inside the cyanobacterial cells. Illumination of a single cell in the P. uncinatum trichome gives rise to quenching of the fluorescence in this cell and usually in one or two neighbor cells, whereas the rest of trichome remains fluorescing. A small light spot (5% of the trichome length) causes an increase in the ethylrhodamine fluorescence not only in the illuminated but also in the nonilluminated parts of the trichome up to the laser-treated cell or its neighbor(s). It is concluded ethylrhodamine can be used to monitor the power transmission which was previously demonstrated by microelectrode studies of the cyanobacterial trichomes. In certain trichomes, several "dark" cells appear during the storage of the trichomes without energy sources. Illumination for several minutes results in dark cells becoming fluorescing. Thus some cells or cell clusters can be reversibly excluded from the lateral delta psi-transmitting system of the trichome, the rest being still electrically connected. This means that filamentous cyanobacteria possess mechanisms to transmit power along the trichome and to switch off this transmission. The Rockefeller University Press 1988-08-01 /pmc/articles/PMC2115227/ /pubmed/3138245 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
Coupling membranes as energy-transmitting cables. II. Cyanobacterial trichomes
title Coupling membranes as energy-transmitting cables. II. Cyanobacterial trichomes
title_full Coupling membranes as energy-transmitting cables. II. Cyanobacterial trichomes
title_fullStr Coupling membranes as energy-transmitting cables. II. Cyanobacterial trichomes
title_full_unstemmed Coupling membranes as energy-transmitting cables. II. Cyanobacterial trichomes
title_short Coupling membranes as energy-transmitting cables. II. Cyanobacterial trichomes
title_sort coupling membranes as energy-transmitting cables. ii. cyanobacterial trichomes
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2115227/
https://www.ncbi.nlm.nih.gov/pubmed/3138245