Cargando…

Signal transduction in Dictyostelium fgd A mutants with a defective interaction between surface cAMP receptors and a GTP-binding regulatory protein [published erratum appears in J Cell Biol 1988 Dec;107(6 Pt 1):following 2463]

Transmembrane signal transduction was investigated in four Dictyostelium discoideum mutants that belong to the fgd A complementation group. The results show the following. (a) Cell surface cAMP receptors are present in fgd A mutants, but cAMP does not induce any of the intracellular responses, inclu...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1988
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2115228/
https://www.ncbi.nlm.nih.gov/pubmed/2843545
Descripción
Sumario:Transmembrane signal transduction was investigated in four Dictyostelium discoideum mutants that belong to the fgd A complementation group. The results show the following. (a) Cell surface cAMP receptors are present in fgd A mutants, but cAMP does not induce any of the intracellular responses, including the activation of adenylate or guanylate cyclase and chemotaxis. (b) cAMP induces down- regulation and the covalent modification (presumably phosphorylation) of the cAMP receptor. (c) The inhibitory effects of GTP gamma S and GDP beta S on cAMP binding are reduced; the stimulatory effect of cAMP on GTP gamma S binding is lost in fgd A mutants. (d) Basal high-affinity GTPase activity is reduced 40% and the stimulatory effect of cAMP is decreased from 40% in wild type to 30% in fgd A. (e) GTP-mediated stimulation and inhibition of adenylate cyclase is normal in mutant membranes. The results suggest a defective interaction between cell surface cAMP receptors and a specific G-protein in fgd A mutants. This interaction appears to be essential for nearly all signal transduction pathways in Dictyostelium discoideum.