Cargando…

Topological distribution of two connexin32 antigenic sites in intact and split rodent hepatocyte gap junctions

The membrane topology of connexin32, a principal polypeptide of gap junctions in diverse cell types, has been studied in rat and mouse hepatocyte gap junctions using site-specific antisera raised against synthetic oligopeptides corresponding to amino acid sequences deduced from cDNA clones. Based on...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1988
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2115343/
https://www.ncbi.nlm.nih.gov/pubmed/2460469
_version_ 1782140633921617920
collection PubMed
description The membrane topology of connexin32, a principal polypeptide of gap junctions in diverse cell types, has been studied in rat and mouse hepatocyte gap junctions using site-specific antisera raised against synthetic oligopeptides corresponding to amino acid sequences deduced from cDNA clones. Based on published hydropathicity maps and identified protease-sensitive cleavage sites, oligopeptides were synthesized corresponding to two hydrophilic domains of connexin32, one predicted to face the cytoplasm, the other predicted to be directed extracellularly. Antisera were raised to keyhole limpet hemocyanin conjugates of the oligopeptides and used to map the distribution of their antigens using indirect immunocytochemistry on isolated gap junctions. The results directly demonstrated the cytoplasmic orientation of an antigen contained within amino acids 98-124 of the connexin32 sequence. The extracellular space in intact, isolated gap junctions is too small to permit binding of antibody molecules, necessitating the experimental separation of the junctional membranes to expose their extracellular surfaces using a urea/alkali procedure. While an antigen contained within amino acids 164-189 was visualized on the extracellular surfaces of some of the separated junctional membranes, variability in the observations and in the splitting procedure left ambiguities concerning the biological relevance of the observations after the denaturing conditions necessary to separate the junctional membranes. Using a different approach, however, the antigen could be exposed in intact liver using a hypertonic disaccharide junction-splitting procedure. The period of time of antigen exposure at the cell surface appears to peak at 30 s and disappear by 2-4 min. Taken together, these data demonstrate the extracellular orientation of an antigen contained within amino acids 164-189, which may be involved in cell-cell interaction within the gap junction.
format Text
id pubmed-2115343
institution National Center for Biotechnology Information
language English
publishDate 1988
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-21153432008-05-01 Topological distribution of two connexin32 antigenic sites in intact and split rodent hepatocyte gap junctions J Cell Biol Articles The membrane topology of connexin32, a principal polypeptide of gap junctions in diverse cell types, has been studied in rat and mouse hepatocyte gap junctions using site-specific antisera raised against synthetic oligopeptides corresponding to amino acid sequences deduced from cDNA clones. Based on published hydropathicity maps and identified protease-sensitive cleavage sites, oligopeptides were synthesized corresponding to two hydrophilic domains of connexin32, one predicted to face the cytoplasm, the other predicted to be directed extracellularly. Antisera were raised to keyhole limpet hemocyanin conjugates of the oligopeptides and used to map the distribution of their antigens using indirect immunocytochemistry on isolated gap junctions. The results directly demonstrated the cytoplasmic orientation of an antigen contained within amino acids 98-124 of the connexin32 sequence. The extracellular space in intact, isolated gap junctions is too small to permit binding of antibody molecules, necessitating the experimental separation of the junctional membranes to expose their extracellular surfaces using a urea/alkali procedure. While an antigen contained within amino acids 164-189 was visualized on the extracellular surfaces of some of the separated junctional membranes, variability in the observations and in the splitting procedure left ambiguities concerning the biological relevance of the observations after the denaturing conditions necessary to separate the junctional membranes. Using a different approach, however, the antigen could be exposed in intact liver using a hypertonic disaccharide junction-splitting procedure. The period of time of antigen exposure at the cell surface appears to peak at 30 s and disappear by 2-4 min. Taken together, these data demonstrate the extracellular orientation of an antigen contained within amino acids 164-189, which may be involved in cell-cell interaction within the gap junction. The Rockefeller University Press 1988-11-01 /pmc/articles/PMC2115343/ /pubmed/2460469 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
Topological distribution of two connexin32 antigenic sites in intact and split rodent hepatocyte gap junctions
title Topological distribution of two connexin32 antigenic sites in intact and split rodent hepatocyte gap junctions
title_full Topological distribution of two connexin32 antigenic sites in intact and split rodent hepatocyte gap junctions
title_fullStr Topological distribution of two connexin32 antigenic sites in intact and split rodent hepatocyte gap junctions
title_full_unstemmed Topological distribution of two connexin32 antigenic sites in intact and split rodent hepatocyte gap junctions
title_short Topological distribution of two connexin32 antigenic sites in intact and split rodent hepatocyte gap junctions
title_sort topological distribution of two connexin32 antigenic sites in intact and split rodent hepatocyte gap junctions
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2115343/
https://www.ncbi.nlm.nih.gov/pubmed/2460469