Cargando…

Periodic organization of the contractile apparatus in smooth muscle revealed by the motion of dense bodies in single cells

To study the organization of the contractile apparatus in smooth muscle and its behavior during shortening, the movement of dense bodies in contracting saponin skinned, isolated cells was analyzed from digital images collected at fixed time intervals. These cells were optically lucent so that puncta...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1989
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2115509/
https://www.ncbi.nlm.nih.gov/pubmed/2494193
_version_ 1782140673164574720
collection PubMed
description To study the organization of the contractile apparatus in smooth muscle and its behavior during shortening, the movement of dense bodies in contracting saponin skinned, isolated cells was analyzed from digital images collected at fixed time intervals. These cells were optically lucent so that punctate structures, identified immunocytochemically as dense bodies, were visible in them with the phase contrast microscope. Methods were adapted and developed to track the bodies and to study their relative motion. Analysis of their tracks or trajectories indicated that the bodies did not move passively as cells shortened and that nearby bodies often had similar patterns of motion. Analysis of the relative motion of the bodies indicated that some bodies were structurally linked to one another or constrained so that the distance between them remained relatively constant during contraction. Such bodies tended to fall into laterally oriented, semirigid groups found at approximately 6-microns intervals along the cell axis. Other dense bodies moved rapidly toward one another axially during contraction. Such bodies were often members of separate semirigid groups. This suggests that the semirigid groups of dense bodies in smooth muscle cells may provide a framework for the attachment of the contractile structures to the cytoskeleton and the cell surface and indicates that smooth muscle may be more well-ordered than previously thought. The methods described here for the analysis of the motion of intracellular structures should be directly applicable to the study of motion in other cell types.
format Text
id pubmed-2115509
institution National Center for Biotechnology Information
language English
publishDate 1989
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-21155092008-05-01 Periodic organization of the contractile apparatus in smooth muscle revealed by the motion of dense bodies in single cells J Cell Biol Articles To study the organization of the contractile apparatus in smooth muscle and its behavior during shortening, the movement of dense bodies in contracting saponin skinned, isolated cells was analyzed from digital images collected at fixed time intervals. These cells were optically lucent so that punctate structures, identified immunocytochemically as dense bodies, were visible in them with the phase contrast microscope. Methods were adapted and developed to track the bodies and to study their relative motion. Analysis of their tracks or trajectories indicated that the bodies did not move passively as cells shortened and that nearby bodies often had similar patterns of motion. Analysis of the relative motion of the bodies indicated that some bodies were structurally linked to one another or constrained so that the distance between them remained relatively constant during contraction. Such bodies tended to fall into laterally oriented, semirigid groups found at approximately 6-microns intervals along the cell axis. Other dense bodies moved rapidly toward one another axially during contraction. Such bodies were often members of separate semirigid groups. This suggests that the semirigid groups of dense bodies in smooth muscle cells may provide a framework for the attachment of the contractile structures to the cytoskeleton and the cell surface and indicates that smooth muscle may be more well-ordered than previously thought. The methods described here for the analysis of the motion of intracellular structures should be directly applicable to the study of motion in other cell types. The Rockefeller University Press 1989-04-01 /pmc/articles/PMC2115509/ /pubmed/2494193 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
Periodic organization of the contractile apparatus in smooth muscle revealed by the motion of dense bodies in single cells
title Periodic organization of the contractile apparatus in smooth muscle revealed by the motion of dense bodies in single cells
title_full Periodic organization of the contractile apparatus in smooth muscle revealed by the motion of dense bodies in single cells
title_fullStr Periodic organization of the contractile apparatus in smooth muscle revealed by the motion of dense bodies in single cells
title_full_unstemmed Periodic organization of the contractile apparatus in smooth muscle revealed by the motion of dense bodies in single cells
title_short Periodic organization of the contractile apparatus in smooth muscle revealed by the motion of dense bodies in single cells
title_sort periodic organization of the contractile apparatus in smooth muscle revealed by the motion of dense bodies in single cells
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2115509/
https://www.ncbi.nlm.nih.gov/pubmed/2494193