Cargando…

Requirements for the Ca2+-independent component in the initial intercellular adhesion of C2 myoblasts

Using a sensitive and quantitative adhesion assay, we have studied the initial stages of the intercellular adhesion of the C2 mouse myoblast line. After dissociation in low levels of trypsin in EDTA, C2 cells can rapidly reaggregate by Ca2+-independent mechanisms to form large multicellular aggregat...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1988
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2115660/
https://www.ncbi.nlm.nih.gov/pubmed/3198689
_version_ 1782140708353736704
collection PubMed
description Using a sensitive and quantitative adhesion assay, we have studied the initial stages of the intercellular adhesion of the C2 mouse myoblast line. After dissociation in low levels of trypsin in EDTA, C2 cells can rapidly reaggregate by Ca2+-independent mechanisms to form large multicellular aggregates. If cells are allowed to recover from dissociation by incubation in defined media, this adhesive system is augmented by a Ca2+-dependent mechanism with maximum recovery seen after 4 h incubation. The Ca2+-independent adhesion system is inhibited by preincubation of cell monolayers with cycloheximide before dissociation. Aggregation is also reduced after exposure to monensin, implicating a role for surface-translocated glycoproteins in this mechanism of adhesion. In coaggregation experiments using C2 myoblasts and 3T3 fibroblasts in which the Ca2+-dependent adhesion system was inactivated, no adhesive specificity between the two cell types was seen. Although synthetic peptides containing the RGD sequence are known to inhibit cell-substratum adhesion in various cell types, incubation of C2 myoblasts with the integrin-binding tetrapeptide, RGDS, greatly stimulated the Ca2+-independent aggregation of these cells while control analogs had no effect. These results show that a Ca2+- independent mechanism alone is sufficient to allow for the rapid formation of multicellular aggregates in a mouse myoblast line, and that many of the requirements and perturbants of the Ca2+-independent system of intercellular myoblast adhesion are similar to those of the Ca2+-dependent adhesion mechanisms.
format Text
id pubmed-2115660
institution National Center for Biotechnology Information
language English
publishDate 1988
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-21156602008-05-01 Requirements for the Ca2+-independent component in the initial intercellular adhesion of C2 myoblasts J Cell Biol Articles Using a sensitive and quantitative adhesion assay, we have studied the initial stages of the intercellular adhesion of the C2 mouse myoblast line. After dissociation in low levels of trypsin in EDTA, C2 cells can rapidly reaggregate by Ca2+-independent mechanisms to form large multicellular aggregates. If cells are allowed to recover from dissociation by incubation in defined media, this adhesive system is augmented by a Ca2+-dependent mechanism with maximum recovery seen after 4 h incubation. The Ca2+-independent adhesion system is inhibited by preincubation of cell monolayers with cycloheximide before dissociation. Aggregation is also reduced after exposure to monensin, implicating a role for surface-translocated glycoproteins in this mechanism of adhesion. In coaggregation experiments using C2 myoblasts and 3T3 fibroblasts in which the Ca2+-dependent adhesion system was inactivated, no adhesive specificity between the two cell types was seen. Although synthetic peptides containing the RGD sequence are known to inhibit cell-substratum adhesion in various cell types, incubation of C2 myoblasts with the integrin-binding tetrapeptide, RGDS, greatly stimulated the Ca2+-independent aggregation of these cells while control analogs had no effect. These results show that a Ca2+- independent mechanism alone is sufficient to allow for the rapid formation of multicellular aggregates in a mouse myoblast line, and that many of the requirements and perturbants of the Ca2+-independent system of intercellular myoblast adhesion are similar to those of the Ca2+-dependent adhesion mechanisms. The Rockefeller University Press 1988-12-01 /pmc/articles/PMC2115660/ /pubmed/3198689 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
Requirements for the Ca2+-independent component in the initial intercellular adhesion of C2 myoblasts
title Requirements for the Ca2+-independent component in the initial intercellular adhesion of C2 myoblasts
title_full Requirements for the Ca2+-independent component in the initial intercellular adhesion of C2 myoblasts
title_fullStr Requirements for the Ca2+-independent component in the initial intercellular adhesion of C2 myoblasts
title_full_unstemmed Requirements for the Ca2+-independent component in the initial intercellular adhesion of C2 myoblasts
title_short Requirements for the Ca2+-independent component in the initial intercellular adhesion of C2 myoblasts
title_sort requirements for the ca2+-independent component in the initial intercellular adhesion of c2 myoblasts
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2115660/
https://www.ncbi.nlm.nih.gov/pubmed/3198689