Cargando…
Echinonectin: a new embryonic substrate adhesion protein
An extracellular matrix molecule has been purified from sea urchin (Lytechinus variegatus) embryos. Based on its functional properties and on its origin, this glycoprotein has been given the name "echinonectin." Echinonectin is a 230-kD dimer with a unique bow tie shape when viewed by elec...
Formato: | Texto |
---|---|
Lenguaje: | English |
Publicado: |
The Rockefeller University Press
1988
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2115662/ https://www.ncbi.nlm.nih.gov/pubmed/3198690 |
Sumario: | An extracellular matrix molecule has been purified from sea urchin (Lytechinus variegatus) embryos. Based on its functional properties and on its origin, this glycoprotein has been given the name "echinonectin." Echinonectin is a 230-kD dimer with a unique bow tie shape when viewed by electron microscopy. The molecule is 12 nm long, 8 nm wide at the ends, and narrows to approximately 4 nm at the middle. It is composed of two 116-kD U-shaped subunits that are attached to each other by disulfide bonds at their respective apices. Polyclonal antibodies were used to localize echinonectin in paraffin-embedded, sectioned specimens by indirect immunofluorescence. The protein is stored in vesicles or granules in unfertilized eggs, is released after fertilization, and later becomes localized on the apical surface of ectoderm cells in the embryo. When used as a substrate in a quantitative in vitro assay, echinonectin is highly effective as an adhesive substrate for dissociated embryonic cells. Because of the quantity, pattern of appearance, distribution, and adhesive characteristics of this protein, we suggest that echinonectin serves as a substrate adhesion molecule during sea urchin development. |
---|