Cargando…
A quantitative model of traffic between plasma membrane and secondary lysosomes: evaluation of inflow, lateral diffusion, and degradation
We present here a mathematical model that accounts for the various proportions of plasma membrane constituents occurring in the lysosomal membrane of rat fibroblasts (Draye, J.-P., J. Quintart, P. J. Courtoy, and P. Baudhuin. 1987. Eur. J. Biochem. 170: 395-403; Draye, J.-P., P. J. Courtoy, J. Quint...
Formato: | Texto |
---|---|
Lenguaje: | English |
Publicado: |
The Rockefeller University Press
1988
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2115686/ https://www.ncbi.nlm.nih.gov/pubmed/2848849 |
_version_ | 1782140714733273088 |
---|---|
collection | PubMed |
description | We present here a mathematical model that accounts for the various proportions of plasma membrane constituents occurring in the lysosomal membrane of rat fibroblasts (Draye, J.-P., J. Quintart, P. J. Courtoy, and P. Baudhuin. 1987. Eur. J. Biochem. 170: 395-403; Draye, J.-P., P. J. Courtoy, J. Quintart, and P. Baudhuin. 1987. Eur. J. Biochem. 170:405-411). It is based on contents of plasma membrane markers in purified lysosomal preparations, evaluations of their half-life in lysosomes and measurements of areas of lysosomal and plasma membranes by morphometry. In rat fibroblasts, structures labeled by a 2-h uptake of horseradish peroxidase followed by a 16-h chase (i.e., lysosomes) occupy 3% of the cellular volume and their total membrane area corresponds to 30% of the pericellular membrane area. Based on the latter values, the model predicts the rate of inflow and outflow of plasma membrane constituents into lysosomal membrane, provided their rate of degradation is known. Of the bulk of polypeptides iodinated at the cell surface, only 4% reach the lysosomes every hour, where the major part (integral of 83%) is degraded with a half-life in lysosomes of integral to 0.8 h. For specific plasma membrane constituents, this model can further account for differences in the association to the lysosomal membrane by variations in the rate either of lysosomal degradation, of inflow along the pathway from the pericellular membrane to the lysosomes, or of lateral diffusion. |
format | Text |
id | pubmed-2115686 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 1988 |
publisher | The Rockefeller University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-21156862008-05-01 A quantitative model of traffic between plasma membrane and secondary lysosomes: evaluation of inflow, lateral diffusion, and degradation J Cell Biol Articles We present here a mathematical model that accounts for the various proportions of plasma membrane constituents occurring in the lysosomal membrane of rat fibroblasts (Draye, J.-P., J. Quintart, P. J. Courtoy, and P. Baudhuin. 1987. Eur. J. Biochem. 170: 395-403; Draye, J.-P., P. J. Courtoy, J. Quintart, and P. Baudhuin. 1987. Eur. J. Biochem. 170:405-411). It is based on contents of plasma membrane markers in purified lysosomal preparations, evaluations of their half-life in lysosomes and measurements of areas of lysosomal and plasma membranes by morphometry. In rat fibroblasts, structures labeled by a 2-h uptake of horseradish peroxidase followed by a 16-h chase (i.e., lysosomes) occupy 3% of the cellular volume and their total membrane area corresponds to 30% of the pericellular membrane area. Based on the latter values, the model predicts the rate of inflow and outflow of plasma membrane constituents into lysosomal membrane, provided their rate of degradation is known. Of the bulk of polypeptides iodinated at the cell surface, only 4% reach the lysosomes every hour, where the major part (integral of 83%) is degraded with a half-life in lysosomes of integral to 0.8 h. For specific plasma membrane constituents, this model can further account for differences in the association to the lysosomal membrane by variations in the rate either of lysosomal degradation, of inflow along the pathway from the pericellular membrane to the lysosomes, or of lateral diffusion. The Rockefeller University Press 1988-12-01 /pmc/articles/PMC2115686/ /pubmed/2848849 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/). |
spellingShingle | Articles A quantitative model of traffic between plasma membrane and secondary lysosomes: evaluation of inflow, lateral diffusion, and degradation |
title | A quantitative model of traffic between plasma membrane and secondary lysosomes: evaluation of inflow, lateral diffusion, and degradation |
title_full | A quantitative model of traffic between plasma membrane and secondary lysosomes: evaluation of inflow, lateral diffusion, and degradation |
title_fullStr | A quantitative model of traffic between plasma membrane and secondary lysosomes: evaluation of inflow, lateral diffusion, and degradation |
title_full_unstemmed | A quantitative model of traffic between plasma membrane and secondary lysosomes: evaluation of inflow, lateral diffusion, and degradation |
title_short | A quantitative model of traffic between plasma membrane and secondary lysosomes: evaluation of inflow, lateral diffusion, and degradation |
title_sort | quantitative model of traffic between plasma membrane and secondary lysosomes: evaluation of inflow, lateral diffusion, and degradation |
topic | Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2115686/ https://www.ncbi.nlm.nih.gov/pubmed/2848849 |