Cargando…

The role of cytoskeleton in organizing growth cones: a microfilament- associated growth cone component depends upon microtubules for its localization

We are interested in the relationship between the cytoskeleton and the organization of polarized cell morphology. We show here that the growth cones of hippocampal neurons in culture are specifically stained by a monoclonal antibody called 13H9. In other systems, the antigen recognized by 13H9 is as...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1989
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2115791/
https://www.ncbi.nlm.nih.gov/pubmed/2677024
_version_ 1782140739540484096
collection PubMed
description We are interested in the relationship between the cytoskeleton and the organization of polarized cell morphology. We show here that the growth cones of hippocampal neurons in culture are specifically stained by a monoclonal antibody called 13H9. In other systems, the antigen recognized by 13H9 is associated with marginal bands of chicken erythrocytes and shows properties of both microtubule-and microfilament- associated proteins (Birgbauer, E., and F. Solomon. 1989 J. Cell Biol. 109:1609-1620). This dual nature is manifest in hippocampal neurons as well. At early stages after plating, the antibody stains the circumferential lamellipodia that mediate initial cell spreading. As processes emerge, 13H9 staining is heavily concentrated in the distal regions of growth cones, particularly in lamellipodial fans. In these cells, the 13H9 staining is complementary to the localization of assembled microtubules. It colocalizes partially, but not entirely, with phalloidin staining of assembled actin. Incubation with nocodazole rapidly induces microtubule depolymerization, which proceeds in the distal-to-proximal direction in the processes. At the same time, a rapid and dramatic redistribution of the 13H9 staining occurs; it delocalizes along the axon shaft, becoming clearly distinct from the phalloidin staining and always remaining distal to the receding front of assembled microtubules. After longer times without assembled microtubules, no staining of 13H9 can be detected. Removal of the nocodazole allows the microtubules to reform, in an ordered proximal-to- distal fashion. The 13H9 immunoreactivity also reappears, but only in the growth cones, not in any intermediate positions along the axon, and only after the reformation of microtubules is complete. The results indicate that the antigen recognized by 13H9 is highly concentrated in growth cones, closely associated with polymerized actin, and that its proper localization depends upon intact microtubules.
format Text
id pubmed-2115791
institution National Center for Biotechnology Information
language English
publishDate 1989
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-21157912008-05-01 The role of cytoskeleton in organizing growth cones: a microfilament- associated growth cone component depends upon microtubules for its localization J Cell Biol Articles We are interested in the relationship between the cytoskeleton and the organization of polarized cell morphology. We show here that the growth cones of hippocampal neurons in culture are specifically stained by a monoclonal antibody called 13H9. In other systems, the antigen recognized by 13H9 is associated with marginal bands of chicken erythrocytes and shows properties of both microtubule-and microfilament- associated proteins (Birgbauer, E., and F. Solomon. 1989 J. Cell Biol. 109:1609-1620). This dual nature is manifest in hippocampal neurons as well. At early stages after plating, the antibody stains the circumferential lamellipodia that mediate initial cell spreading. As processes emerge, 13H9 staining is heavily concentrated in the distal regions of growth cones, particularly in lamellipodial fans. In these cells, the 13H9 staining is complementary to the localization of assembled microtubules. It colocalizes partially, but not entirely, with phalloidin staining of assembled actin. Incubation with nocodazole rapidly induces microtubule depolymerization, which proceeds in the distal-to-proximal direction in the processes. At the same time, a rapid and dramatic redistribution of the 13H9 staining occurs; it delocalizes along the axon shaft, becoming clearly distinct from the phalloidin staining and always remaining distal to the receding front of assembled microtubules. After longer times without assembled microtubules, no staining of 13H9 can be detected. Removal of the nocodazole allows the microtubules to reform, in an ordered proximal-to- distal fashion. The 13H9 immunoreactivity also reappears, but only in the growth cones, not in any intermediate positions along the axon, and only after the reformation of microtubules is complete. The results indicate that the antigen recognized by 13H9 is highly concentrated in growth cones, closely associated with polymerized actin, and that its proper localization depends upon intact microtubules. The Rockefeller University Press 1989-10-01 /pmc/articles/PMC2115791/ /pubmed/2677024 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
The role of cytoskeleton in organizing growth cones: a microfilament- associated growth cone component depends upon microtubules for its localization
title The role of cytoskeleton in organizing growth cones: a microfilament- associated growth cone component depends upon microtubules for its localization
title_full The role of cytoskeleton in organizing growth cones: a microfilament- associated growth cone component depends upon microtubules for its localization
title_fullStr The role of cytoskeleton in organizing growth cones: a microfilament- associated growth cone component depends upon microtubules for its localization
title_full_unstemmed The role of cytoskeleton in organizing growth cones: a microfilament- associated growth cone component depends upon microtubules for its localization
title_short The role of cytoskeleton in organizing growth cones: a microfilament- associated growth cone component depends upon microtubules for its localization
title_sort role of cytoskeleton in organizing growth cones: a microfilament- associated growth cone component depends upon microtubules for its localization
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2115791/
https://www.ncbi.nlm.nih.gov/pubmed/2677024