Cargando…

A marginal band-associated protein has properties of both microtubule- and microfilament-associated proteins

The marginal band of nucleated erythrocytes is a microtubule organelle under rigorous quantitative and spatial control, with properties quite different from those of the microtubule organelles of cultured cells. Previous results suggest that proteins other than tubulin may participate in organizing...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1989
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2115795/
https://www.ncbi.nlm.nih.gov/pubmed/2677023
_version_ 1782140740497833984
collection PubMed
description The marginal band of nucleated erythrocytes is a microtubule organelle under rigorous quantitative and spatial control, with properties quite different from those of the microtubule organelles of cultured cells. Previous results suggest that proteins other than tubulin may participate in organizing the marginal band, and may interact with elements of the erythrocyte cytoskeleton in addition to microtubules. To identify such species, we raised mAbs against the proteins that assemble from chicken brain homogenates with tubulin. One such antibody binds to a single protein in chicken erythrocytes, and produces an immunofluorescence pattern colocalizing with marginal band microtubules. Several properties of this protein are identical to those of ezrin, a protein isolated from brush border and localized to motile elements of cultured cells. A significant proportion of the antigen is not soluble in erythrocytes, as determined by extraction with nonionic detergent. This cytoskeleton-associated fraction is unaffected by treatments that solubilize the marginal band microtubules. The protein has properties of both microtubule- and microfilament-associated proteins. In the accompanying manuscript (Goslin, K., E. Birgbauer, G. Banker, and F. Solomon. 1989. J. Cell Biol. 109:1621-1631), we show that the same antibody recognizes a component of growth cones with a similar dual nature. In early embryonic red blood cells, the antigen is dispersed throughout the cell and does not colocalize with assembled tubulin. Its confinement to the marginal band during development follows rather than precedes that of microtubules. These results, along with previous work, suggest models for the formation of the marginal band.
format Text
id pubmed-2115795
institution National Center for Biotechnology Information
language English
publishDate 1989
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-21157952008-05-01 A marginal band-associated protein has properties of both microtubule- and microfilament-associated proteins J Cell Biol Articles The marginal band of nucleated erythrocytes is a microtubule organelle under rigorous quantitative and spatial control, with properties quite different from those of the microtubule organelles of cultured cells. Previous results suggest that proteins other than tubulin may participate in organizing the marginal band, and may interact with elements of the erythrocyte cytoskeleton in addition to microtubules. To identify such species, we raised mAbs against the proteins that assemble from chicken brain homogenates with tubulin. One such antibody binds to a single protein in chicken erythrocytes, and produces an immunofluorescence pattern colocalizing with marginal band microtubules. Several properties of this protein are identical to those of ezrin, a protein isolated from brush border and localized to motile elements of cultured cells. A significant proportion of the antigen is not soluble in erythrocytes, as determined by extraction with nonionic detergent. This cytoskeleton-associated fraction is unaffected by treatments that solubilize the marginal band microtubules. The protein has properties of both microtubule- and microfilament-associated proteins. In the accompanying manuscript (Goslin, K., E. Birgbauer, G. Banker, and F. Solomon. 1989. J. Cell Biol. 109:1621-1631), we show that the same antibody recognizes a component of growth cones with a similar dual nature. In early embryonic red blood cells, the antigen is dispersed throughout the cell and does not colocalize with assembled tubulin. Its confinement to the marginal band during development follows rather than precedes that of microtubules. These results, along with previous work, suggest models for the formation of the marginal band. The Rockefeller University Press 1989-10-01 /pmc/articles/PMC2115795/ /pubmed/2677023 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
A marginal band-associated protein has properties of both microtubule- and microfilament-associated proteins
title A marginal band-associated protein has properties of both microtubule- and microfilament-associated proteins
title_full A marginal band-associated protein has properties of both microtubule- and microfilament-associated proteins
title_fullStr A marginal band-associated protein has properties of both microtubule- and microfilament-associated proteins
title_full_unstemmed A marginal band-associated protein has properties of both microtubule- and microfilament-associated proteins
title_short A marginal band-associated protein has properties of both microtubule- and microfilament-associated proteins
title_sort marginal band-associated protein has properties of both microtubule- and microfilament-associated proteins
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2115795/
https://www.ncbi.nlm.nih.gov/pubmed/2677023