Cargando…

Stable nuclear transformation of Chlamydomonas using the Chlamydomonas gene for nitrate reductase

We have developed a nuclear transformation system for Chlamydomonas reinhardtii, using micro-projectile bombardment to introduce the gene encoding nitrate reductase into a nit1 mutant strain which lacks nitrate reductase activity. By using either supercoiled or linear plasmid DNA, transformants were...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1989
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2115893/
https://www.ncbi.nlm.nih.gov/pubmed/2592399
_version_ 1782140763556020224
collection PubMed
description We have developed a nuclear transformation system for Chlamydomonas reinhardtii, using micro-projectile bombardment to introduce the gene encoding nitrate reductase into a nit1 mutant strain which lacks nitrate reductase activity. By using either supercoiled or linear plasmid DNA, transformants were recovered consistently at a low efficiency, on the order of 15 transformants per microgram of plasmid DNA. In all cases the transforming DNA was integrated into the nuclear genome, usually in multiple copies. Most of the introduced copies were genetically linked to each other, and they were unlinked to the original nit1 locus. The transforming DNA and nit+ phenotype were stable through mitosis and meiosis, even in the absence of selection. nit1 transcripts of various sizes were expressed at levels equal to or greater than those in wild-type nit+ strains. In most transformants, nitrate reductase enzyme activity was expressed at approximately wild- type levels. In all transformants, nit1 mRNA and nitrate reductase enzyme activity were repressed in cells grown on ammonium medium, showing that expression of the integrated nit1 genes was regulated normally. When a second plasmid with a nonselectable gene was bombarded into the cells along with the nit1 gene, transformants carrying DNA from both plasmids were recovered. In some cases, expression of the unselected gene could be detected. With the advent of nuclear transformation in Chlamydomonas, it becomes the first photosynthetic organism in which both the nuclear and chloroplast compartments can be transformed.
format Text
id pubmed-2115893
institution National Center for Biotechnology Information
language English
publishDate 1989
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-21158932008-05-01 Stable nuclear transformation of Chlamydomonas using the Chlamydomonas gene for nitrate reductase J Cell Biol Articles We have developed a nuclear transformation system for Chlamydomonas reinhardtii, using micro-projectile bombardment to introduce the gene encoding nitrate reductase into a nit1 mutant strain which lacks nitrate reductase activity. By using either supercoiled or linear plasmid DNA, transformants were recovered consistently at a low efficiency, on the order of 15 transformants per microgram of plasmid DNA. In all cases the transforming DNA was integrated into the nuclear genome, usually in multiple copies. Most of the introduced copies were genetically linked to each other, and they were unlinked to the original nit1 locus. The transforming DNA and nit+ phenotype were stable through mitosis and meiosis, even in the absence of selection. nit1 transcripts of various sizes were expressed at levels equal to or greater than those in wild-type nit+ strains. In most transformants, nitrate reductase enzyme activity was expressed at approximately wild- type levels. In all transformants, nit1 mRNA and nitrate reductase enzyme activity were repressed in cells grown on ammonium medium, showing that expression of the integrated nit1 genes was regulated normally. When a second plasmid with a nonselectable gene was bombarded into the cells along with the nit1 gene, transformants carrying DNA from both plasmids were recovered. In some cases, expression of the unselected gene could be detected. With the advent of nuclear transformation in Chlamydomonas, it becomes the first photosynthetic organism in which both the nuclear and chloroplast compartments can be transformed. The Rockefeller University Press 1989-12-01 /pmc/articles/PMC2115893/ /pubmed/2592399 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
Stable nuclear transformation of Chlamydomonas using the Chlamydomonas gene for nitrate reductase
title Stable nuclear transformation of Chlamydomonas using the Chlamydomonas gene for nitrate reductase
title_full Stable nuclear transformation of Chlamydomonas using the Chlamydomonas gene for nitrate reductase
title_fullStr Stable nuclear transformation of Chlamydomonas using the Chlamydomonas gene for nitrate reductase
title_full_unstemmed Stable nuclear transformation of Chlamydomonas using the Chlamydomonas gene for nitrate reductase
title_short Stable nuclear transformation of Chlamydomonas using the Chlamydomonas gene for nitrate reductase
title_sort stable nuclear transformation of chlamydomonas using the chlamydomonas gene for nitrate reductase
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2115893/
https://www.ncbi.nlm.nih.gov/pubmed/2592399