Cargando…

Sequence and tissue distribution of a second protein of hepatic gap junctions, Cx26, as deduced from its cDNA

While a number of different gap junction proteins have now been identified, hepatic gap junctions are unique in being the first demonstrated case where two homologous, but distinct, proteins (28,000 and 21,000 Mr) are found within a single gap junctional plaque (Nicholson, B. J., R. Dermietzel, D. T...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1989
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2115897/
https://www.ncbi.nlm.nih.gov/pubmed/2557354
_version_ 1782140764484009984
collection PubMed
description While a number of different gap junction proteins have now been identified, hepatic gap junctions are unique in being the first demonstrated case where two homologous, but distinct, proteins (28,000 and 21,000 Mr) are found within a single gap junctional plaque (Nicholson, B. J., R. Dermietzel, D. Teplow, O. Traub, K. Willecke, and J.-P. Revel. 1987. Nature [Lond.]. 329:732-734). The cDNA for the major 28,000-Mr component has been cloned (Paul, D. L. 1986. J. Cell Biol. 103:123-134) (Kumar, N. M., and N. B. Gilula. 1986. J. Cell Biol. 103:767-776) and, based on its deduced formula weight of 32,007, has been designated connexin 32 (or Cx32 as used here). We now report the selection and characterization of clones for the second 21,000-Mr protein using an oligonucleotide derived from the amino-terminal protein sequence. Together the cDNAs represent 2.4 kb of the single 2.5- kb message detected in Northern blots. An open reading frame of 678 bp coding for a protein with a calculated molecular mass of 26,453 D was identified. Overall sequence homology with Cx32 and Cx43 (64 and 51% amino acid identities, respectively) and a similar predicted tertiary structure confirm that this protein forms part of the connexin family and is consequently referred to as Cx26. Consistent with observations on Cx43 (Beyer, E. C., D. L. Paul, and D. A. Goodenough. 1987. J. Cell Biol. 105:2621-2629) the most marked divergence between Cx26 and other members of the family lies in the sequence of the cytoplasmic domains. The Cx26 gene is present as a single copy per haploid genome in rat and, based on Southern blots, appears to contain at least one intron outside the open reading frame. Northern blots indicate that Cx32 and Cx26 are typically coexpressed, messages for both having been identified in liver, kidney, intestine, lung, spleen, stomach, testes, and brain, but not heart and adult skeletal muscle. This raises the interesting prospect of having differential modes of regulating intercellular channels within a given tissue and, at least in the case of liver, a given cell.
format Text
id pubmed-2115897
institution National Center for Biotechnology Information
language English
publishDate 1989
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-21158972008-05-01 Sequence and tissue distribution of a second protein of hepatic gap junctions, Cx26, as deduced from its cDNA J Cell Biol Articles While a number of different gap junction proteins have now been identified, hepatic gap junctions are unique in being the first demonstrated case where two homologous, but distinct, proteins (28,000 and 21,000 Mr) are found within a single gap junctional plaque (Nicholson, B. J., R. Dermietzel, D. Teplow, O. Traub, K. Willecke, and J.-P. Revel. 1987. Nature [Lond.]. 329:732-734). The cDNA for the major 28,000-Mr component has been cloned (Paul, D. L. 1986. J. Cell Biol. 103:123-134) (Kumar, N. M., and N. B. Gilula. 1986. J. Cell Biol. 103:767-776) and, based on its deduced formula weight of 32,007, has been designated connexin 32 (or Cx32 as used here). We now report the selection and characterization of clones for the second 21,000-Mr protein using an oligonucleotide derived from the amino-terminal protein sequence. Together the cDNAs represent 2.4 kb of the single 2.5- kb message detected in Northern blots. An open reading frame of 678 bp coding for a protein with a calculated molecular mass of 26,453 D was identified. Overall sequence homology with Cx32 and Cx43 (64 and 51% amino acid identities, respectively) and a similar predicted tertiary structure confirm that this protein forms part of the connexin family and is consequently referred to as Cx26. Consistent with observations on Cx43 (Beyer, E. C., D. L. Paul, and D. A. Goodenough. 1987. J. Cell Biol. 105:2621-2629) the most marked divergence between Cx26 and other members of the family lies in the sequence of the cytoplasmic domains. The Cx26 gene is present as a single copy per haploid genome in rat and, based on Southern blots, appears to contain at least one intron outside the open reading frame. Northern blots indicate that Cx32 and Cx26 are typically coexpressed, messages for both having been identified in liver, kidney, intestine, lung, spleen, stomach, testes, and brain, but not heart and adult skeletal muscle. This raises the interesting prospect of having differential modes of regulating intercellular channels within a given tissue and, at least in the case of liver, a given cell. The Rockefeller University Press 1989-12-01 /pmc/articles/PMC2115897/ /pubmed/2557354 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
Sequence and tissue distribution of a second protein of hepatic gap junctions, Cx26, as deduced from its cDNA
title Sequence and tissue distribution of a second protein of hepatic gap junctions, Cx26, as deduced from its cDNA
title_full Sequence and tissue distribution of a second protein of hepatic gap junctions, Cx26, as deduced from its cDNA
title_fullStr Sequence and tissue distribution of a second protein of hepatic gap junctions, Cx26, as deduced from its cDNA
title_full_unstemmed Sequence and tissue distribution of a second protein of hepatic gap junctions, Cx26, as deduced from its cDNA
title_short Sequence and tissue distribution of a second protein of hepatic gap junctions, Cx26, as deduced from its cDNA
title_sort sequence and tissue distribution of a second protein of hepatic gap junctions, cx26, as deduced from its cdna
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2115897/
https://www.ncbi.nlm.nih.gov/pubmed/2557354