Cargando…

Use of transgenic mice to study the routing of secretory proteins in intestinal epithelial cells: analysis of human growth hormone compartmentalization as a function of cell type and differentiation [published erratum appears in J Cell Biol 1990 Jan;110(1):following 227]

The intestinal epithelium is a heterogeneous cell monolayer that undergoes continuous renewal and differentiation along the crypt-villus axis. We have used transgenic mice to examine the compartmentalization of a regulated endocrine secretory protein, human growth hormone (hGH), in the four exocrine...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1989
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2115925/
https://www.ncbi.nlm.nih.gov/pubmed/2689454
_version_ 1782140771038658560
collection PubMed
description The intestinal epithelium is a heterogeneous cell monolayer that undergoes continuous renewal and differentiation along the crypt-villus axis. We have used transgenic mice to examine the compartmentalization of a regulated endocrine secretory protein, human growth hormone (hGH), in the four exocrine cells of the mouse intestinal epithelium (Paneth cells, intermediate cells, typical goblet cells, and granular goblet cells), as well as in its enteroendocrine and absorptive (enterocyte) cell populations. Nucleotides -596 to +21 of the rat liver fatty acid binding protein gene, when linked to the hGH gene (beginning at nucleotide +3) direct efficient synthesis of hGH in the gastrointestinal epithelium of transgenic animals (Sweetser, D. A., D. W. McKeel, E. F. Birkenmeier, P. C. Hoppe, and J. I. Gordon. 1988. Genes & Dev. 2:1318-1332). This provides a powerful in vivo model for analyzing protein sorting in diverse, differentiating, and polarized epithelial cells. Using EM immunocytochemical techniques, we demonstrated that this foreign polypeptide hormone entered the regulated basal granules of enteroendocrine cells as well as the apical secretory granules of exocrine Paneth cells, intermediate cells, and granular goblet cells. This suggests that common signals are recognized by the "sorting mechanisms" in regulated endocrine and exocrine cells. hGH was targeted to the electron-dense cores of secretory granules in granular goblet and intermediate cells, along with endogenous cell products. Thus, this polypeptide hormone contains domains that promote its segregation within certain exocrine granules. No expression of hGH was noted in typical goblet cells, suggesting that differences exist in the regulatory environments of granular and typical goblet cells. In enterocytes, hGH accumulated in dense-core granules located near apical and lateral cell surfaces, raising the possibility that these cells, which are known to conduct constitutive vesicular transport toward both apical and basolateral surfaces, also contain a previously unrecognized regulated pathway. Together our studies indicate that transgenic mice represent a valuable system for analyzing trafficking pathways and sorting mechanisms of secretory proteins in vivo.
format Text
id pubmed-2115925
institution National Center for Biotechnology Information
language English
publishDate 1989
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-21159252008-05-01 Use of transgenic mice to study the routing of secretory proteins in intestinal epithelial cells: analysis of human growth hormone compartmentalization as a function of cell type and differentiation [published erratum appears in J Cell Biol 1990 Jan;110(1):following 227] J Cell Biol Articles The intestinal epithelium is a heterogeneous cell monolayer that undergoes continuous renewal and differentiation along the crypt-villus axis. We have used transgenic mice to examine the compartmentalization of a regulated endocrine secretory protein, human growth hormone (hGH), in the four exocrine cells of the mouse intestinal epithelium (Paneth cells, intermediate cells, typical goblet cells, and granular goblet cells), as well as in its enteroendocrine and absorptive (enterocyte) cell populations. Nucleotides -596 to +21 of the rat liver fatty acid binding protein gene, when linked to the hGH gene (beginning at nucleotide +3) direct efficient synthesis of hGH in the gastrointestinal epithelium of transgenic animals (Sweetser, D. A., D. W. McKeel, E. F. Birkenmeier, P. C. Hoppe, and J. I. Gordon. 1988. Genes & Dev. 2:1318-1332). This provides a powerful in vivo model for analyzing protein sorting in diverse, differentiating, and polarized epithelial cells. Using EM immunocytochemical techniques, we demonstrated that this foreign polypeptide hormone entered the regulated basal granules of enteroendocrine cells as well as the apical secretory granules of exocrine Paneth cells, intermediate cells, and granular goblet cells. This suggests that common signals are recognized by the "sorting mechanisms" in regulated endocrine and exocrine cells. hGH was targeted to the electron-dense cores of secretory granules in granular goblet and intermediate cells, along with endogenous cell products. Thus, this polypeptide hormone contains domains that promote its segregation within certain exocrine granules. No expression of hGH was noted in typical goblet cells, suggesting that differences exist in the regulatory environments of granular and typical goblet cells. In enterocytes, hGH accumulated in dense-core granules located near apical and lateral cell surfaces, raising the possibility that these cells, which are known to conduct constitutive vesicular transport toward both apical and basolateral surfaces, also contain a previously unrecognized regulated pathway. Together our studies indicate that transgenic mice represent a valuable system for analyzing trafficking pathways and sorting mechanisms of secretory proteins in vivo. The Rockefeller University Press 1989-12-01 /pmc/articles/PMC2115925/ /pubmed/2689454 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
Use of transgenic mice to study the routing of secretory proteins in intestinal epithelial cells: analysis of human growth hormone compartmentalization as a function of cell type and differentiation [published erratum appears in J Cell Biol 1990 Jan;110(1):following 227]
title Use of transgenic mice to study the routing of secretory proteins in intestinal epithelial cells: analysis of human growth hormone compartmentalization as a function of cell type and differentiation [published erratum appears in J Cell Biol 1990 Jan;110(1):following 227]
title_full Use of transgenic mice to study the routing of secretory proteins in intestinal epithelial cells: analysis of human growth hormone compartmentalization as a function of cell type and differentiation [published erratum appears in J Cell Biol 1990 Jan;110(1):following 227]
title_fullStr Use of transgenic mice to study the routing of secretory proteins in intestinal epithelial cells: analysis of human growth hormone compartmentalization as a function of cell type and differentiation [published erratum appears in J Cell Biol 1990 Jan;110(1):following 227]
title_full_unstemmed Use of transgenic mice to study the routing of secretory proteins in intestinal epithelial cells: analysis of human growth hormone compartmentalization as a function of cell type and differentiation [published erratum appears in J Cell Biol 1990 Jan;110(1):following 227]
title_short Use of transgenic mice to study the routing of secretory proteins in intestinal epithelial cells: analysis of human growth hormone compartmentalization as a function of cell type and differentiation [published erratum appears in J Cell Biol 1990 Jan;110(1):following 227]
title_sort use of transgenic mice to study the routing of secretory proteins in intestinal epithelial cells: analysis of human growth hormone compartmentalization as a function of cell type and differentiation [published erratum appears in j cell biol 1990 jan;110(1):following 227]
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2115925/
https://www.ncbi.nlm.nih.gov/pubmed/2689454