Cargando…
Association of ligand-receptor complexes with actin filaments in human neutrophils: a possible regulatory role for a G-protein
Most ligand-receptor interactions result in an immediate generation of various second messengers and a subsequent association of the ligand- receptor complex to the cytoskeleton. Depending on the receptor involved, this linkage to the cytoskeleton has been suggested to play a role in the termination...
Formato: | Texto |
---|---|
Lenguaje: | English |
Publicado: |
The Rockefeller University Press
1989
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2115954/ https://www.ncbi.nlm.nih.gov/pubmed/2512299 |
_version_ | 1782140777846013952 |
---|---|
collection | PubMed |
description | Most ligand-receptor interactions result in an immediate generation of various second messengers and a subsequent association of the ligand- receptor complex to the cytoskeleton. Depending on the receptor involved, this linkage to the cytoskeleton has been suggested to play a role in the termination of second messenger generation and/or the endocytic process whereby the ligand-receptor complex is internalized. We have studied how the binding of chemotactic peptide-receptor complexes to the cytoskeleton of human neutrophils is accomplished. As much as 76% of the tritiated formylmethionyl-leucyl-phenylalanine (fMet- Leu-[3H]Phe) specifically bound to intact cells, obtained by a 30-s stimulation with 20 nM fMet-Leu-[3H]Phe, still remained after Triton X- 100 extraction. Preincubating intact cells with dihydrocytochalasin B (dhCB) or washing the cytoskeletal preparation with a high concentration of potassium, reduced the binding of ligand-receptor complexes to the cytoskeleton by 46% or more. Inhibition of fMet-Leu- Phe-induced generation of second messengers by ADP-ribosylating the alpha-subunit of the receptor-coupled G-protein with pertussis toxin, did not reduce the binding of ligand-receptor complexes to the cytoskeleton. However, using guanosine-5'-O-(2-thiodiphosphate) (GDP beta S) to prevent the dissociation of the fMet-Leu-Phe-associated G- protein within electrically permeabilized cells, led to a pronounced reduction (62%) of the binding between ligand-receptor complexes and the cytoskeleton. In summary, in human neutrophils the rapid association between chemotactic peptide-receptor complexes and the cytoskeleton is dependent on filamentous actin. This association is most likely regulated by the activation and dissociation of the fMet- Leu-Phe-associated G-protein. |
format | Text |
id | pubmed-2115954 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 1989 |
publisher | The Rockefeller University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-21159542008-05-01 Association of ligand-receptor complexes with actin filaments in human neutrophils: a possible regulatory role for a G-protein J Cell Biol Articles Most ligand-receptor interactions result in an immediate generation of various second messengers and a subsequent association of the ligand- receptor complex to the cytoskeleton. Depending on the receptor involved, this linkage to the cytoskeleton has been suggested to play a role in the termination of second messenger generation and/or the endocytic process whereby the ligand-receptor complex is internalized. We have studied how the binding of chemotactic peptide-receptor complexes to the cytoskeleton of human neutrophils is accomplished. As much as 76% of the tritiated formylmethionyl-leucyl-phenylalanine (fMet- Leu-[3H]Phe) specifically bound to intact cells, obtained by a 30-s stimulation with 20 nM fMet-Leu-[3H]Phe, still remained after Triton X- 100 extraction. Preincubating intact cells with dihydrocytochalasin B (dhCB) or washing the cytoskeletal preparation with a high concentration of potassium, reduced the binding of ligand-receptor complexes to the cytoskeleton by 46% or more. Inhibition of fMet-Leu- Phe-induced generation of second messengers by ADP-ribosylating the alpha-subunit of the receptor-coupled G-protein with pertussis toxin, did not reduce the binding of ligand-receptor complexes to the cytoskeleton. However, using guanosine-5'-O-(2-thiodiphosphate) (GDP beta S) to prevent the dissociation of the fMet-Leu-Phe-associated G- protein within electrically permeabilized cells, led to a pronounced reduction (62%) of the binding between ligand-receptor complexes and the cytoskeleton. In summary, in human neutrophils the rapid association between chemotactic peptide-receptor complexes and the cytoskeleton is dependent on filamentous actin. This association is most likely regulated by the activation and dissociation of the fMet- Leu-Phe-associated G-protein. The Rockefeller University Press 1989-12-01 /pmc/articles/PMC2115954/ /pubmed/2512299 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/). |
spellingShingle | Articles Association of ligand-receptor complexes with actin filaments in human neutrophils: a possible regulatory role for a G-protein |
title | Association of ligand-receptor complexes with actin filaments in human neutrophils: a possible regulatory role for a G-protein |
title_full | Association of ligand-receptor complexes with actin filaments in human neutrophils: a possible regulatory role for a G-protein |
title_fullStr | Association of ligand-receptor complexes with actin filaments in human neutrophils: a possible regulatory role for a G-protein |
title_full_unstemmed | Association of ligand-receptor complexes with actin filaments in human neutrophils: a possible regulatory role for a G-protein |
title_short | Association of ligand-receptor complexes with actin filaments in human neutrophils: a possible regulatory role for a G-protein |
title_sort | association of ligand-receptor complexes with actin filaments in human neutrophils: a possible regulatory role for a g-protein |
topic | Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2115954/ https://www.ncbi.nlm.nih.gov/pubmed/2512299 |