Cargando…

The neural cell adhesion molecule N-CAM enhances L1-dependent cell-cell interactions

On neural cells, the cell adhesion molecule L1 is generally found coexpressed with N-CAM. The two molecules have been suggested, but not directly shown, to affect each other's function. To investigate the possible functional relationship between the two molecules, we have characterized the adhe...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1990
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2115980/
https://www.ncbi.nlm.nih.gov/pubmed/2295682
Descripción
Sumario:On neural cells, the cell adhesion molecule L1 is generally found coexpressed with N-CAM. The two molecules have been suggested, but not directly shown, to affect each other's function. To investigate the possible functional relationship between the two molecules, we have characterized the adhesive interactions between the purified molecules and between cultured cells expressing them. Latex beads were coated with purified L1 and found to aggregate slowly. N-CAM-coated beads did not aggregate, but did so after addition of heparin. Beads coated with both L1 and N-CAM aggregated better than L1-coated beads. Strongest aggregation was achieved when L1-coated beads were incubated together with beads carrying both L1 and N-CAM. In a binding assay, the complex of L1 and N-CAM bound strongly to immobilized L1, but not to the cell adhesion molecules J1 or myelin-associated glycoprotein. N-CAM alone did not bind to these glycoproteins. Cerebellar neurones adhered to and sent out processes on L1 immobilized on nitrocellulose. N-CAM was less effective as substrate. Neurones interacted most efficiently with the immobilized complex of L1 and N-CAM. They adhered to this complex even when its concentration was at least 10 times lower than the lowest concentration of L1 found to promote adhesion. The complex became adhesive for cells only when the two glycoproteins were preincubated together for approximately 30 min before their immobilization on nitrocellulose. The adhesive properties between cells that express L1 only or both L1 and N-CAM were also studied. ESb-MP cells, which are L1- positive, but N-CAM negative, aggregated slowly under low Ca2+. Their aggregation could be completely inhibited by antibodies to L1 and enhanced by addition of soluble N-CAM to the cells before aggregation. N2A cells, which are L1 and N-CAM positive aggregated well under low Ca2+. Their aggregation was partially inhibited by either L1 or N-CAM antibodies and almost completely by the combination of both antibodies. N2A and ESb-MP cells coaggregated rapidly and their interaction was similarly inhibited by L1 and N-CAM antibodies. These results indicate that L1 is involved in two types of binding mechanisms. In one type, L1 serves as its own receptor with slow binding kinetics. In the other, L1 is modulated in the presence of N-CAM on one cell (cis-binding) to form a more potent receptor complex for L1 on another cell (trans-binding).