Cargando…

Modulation of the transport of a lysosomal enzyme by PDGF

The major excreted protein (MEP) of transformed mouse fibroblasts is the lysosomal protease, cathepsin L. MEP is also secreted by untransformed mouse cells in response to growth factors and tumor promoters, and is thought to play a role in cell growth and transformation. To determine the relationshi...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1990
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2116021/
https://www.ncbi.nlm.nih.gov/pubmed/2153682
_version_ 1782140793526419456
collection PubMed
description The major excreted protein (MEP) of transformed mouse fibroblasts is the lysosomal protease, cathepsin L. MEP is also secreted by untransformed mouse cells in response to growth factors and tumor promoters, and is thought to play a role in cell growth and transformation. To determine the relationship between MEP synthesis and MEP secretion, we have examined these events in PDGF-treated NIH 3T3 cells. PDGF enhanced MEP synthesis and caused the diversion of MEP from the lysosomal delivery pathway to a secretory pathway. These two effects were found to be regulated independently at various times after growth factor addition. Short PDGF treatments (0.5 or 1 h) resulted in quantitative secretion of MEP although synthesis was near the control level. High levels of both synthesis and secretion occurred between 2 and 14 h of PDGF treatment. Between 18 and 30 h, the amount of secreted MEP returned to the low control level even though synthesis remained elevated. The secretion was specific for MEP; other lysosomal enzymes were not found in the media from PDGF-treated cells. PDGF-induced secretion of MEP was inhibited 84% by cycloheximide, suggesting that protein synthesis is required to elicit this effect. PDGF also caused a time-dependent increase in mannose 6-phosphate (Man-6-P) receptor- mediated endocytosis. These data support a model in which PDGF alters the distribution of Man-6-P receptors such that the Golgi concentration of receptors becomes limiting, thereby causing the selective secretion of the low affinity ligand, MEP.
format Text
id pubmed-2116021
institution National Center for Biotechnology Information
language English
publishDate 1990
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-21160212008-05-01 Modulation of the transport of a lysosomal enzyme by PDGF J Cell Biol Articles The major excreted protein (MEP) of transformed mouse fibroblasts is the lysosomal protease, cathepsin L. MEP is also secreted by untransformed mouse cells in response to growth factors and tumor promoters, and is thought to play a role in cell growth and transformation. To determine the relationship between MEP synthesis and MEP secretion, we have examined these events in PDGF-treated NIH 3T3 cells. PDGF enhanced MEP synthesis and caused the diversion of MEP from the lysosomal delivery pathway to a secretory pathway. These two effects were found to be regulated independently at various times after growth factor addition. Short PDGF treatments (0.5 or 1 h) resulted in quantitative secretion of MEP although synthesis was near the control level. High levels of both synthesis and secretion occurred between 2 and 14 h of PDGF treatment. Between 18 and 30 h, the amount of secreted MEP returned to the low control level even though synthesis remained elevated. The secretion was specific for MEP; other lysosomal enzymes were not found in the media from PDGF-treated cells. PDGF-induced secretion of MEP was inhibited 84% by cycloheximide, suggesting that protein synthesis is required to elicit this effect. PDGF also caused a time-dependent increase in mannose 6-phosphate (Man-6-P) receptor- mediated endocytosis. These data support a model in which PDGF alters the distribution of Man-6-P receptors such that the Golgi concentration of receptors becomes limiting, thereby causing the selective secretion of the low affinity ligand, MEP. The Rockefeller University Press 1990-02-01 /pmc/articles/PMC2116021/ /pubmed/2153682 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
Modulation of the transport of a lysosomal enzyme by PDGF
title Modulation of the transport of a lysosomal enzyme by PDGF
title_full Modulation of the transport of a lysosomal enzyme by PDGF
title_fullStr Modulation of the transport of a lysosomal enzyme by PDGF
title_full_unstemmed Modulation of the transport of a lysosomal enzyme by PDGF
title_short Modulation of the transport of a lysosomal enzyme by PDGF
title_sort modulation of the transport of a lysosomal enzyme by pdgf
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2116021/
https://www.ncbi.nlm.nih.gov/pubmed/2153682