Cargando…

Polarized transport of the polymeric immunoglobulin receptor in transfected rabbit mammary epithelial cells

A cDNA for the rabbit low Mr polymeric immunoglobulin (poly-Ig) receptor was expressed in an immortalized rabbit mammary cell line. The intracellular routing of the receptor and its cell surface expression was analyzed in stably transfected cells grown on permeable supports. Initially the cells form...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1990
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2116109/
https://www.ncbi.nlm.nih.gov/pubmed/1691196
_version_ 1782140814100529152
collection PubMed
description A cDNA for the rabbit low Mr polymeric immunoglobulin (poly-Ig) receptor was expressed in an immortalized rabbit mammary cell line. The intracellular routing of the receptor and its cell surface expression was analyzed in stably transfected cells grown on permeable supports. Initially the cells formed a monolayer with no transmural electrical resistance. All monolayer cells expressed the poly-Ig receptor and cytokeratin 7 filaments characteristic of luminal mammary cells but absent in myoepithelial cells. Within 7 d in culture, the cells underwent cytodifferentiation and formed a bilayer with a transepithelial electrical resistance of approximately 500 omega x cm2. Upper layer cells formed tight junctions with adjacent cells and gap junctions with basal cells. Expression of the poly-Ig receptor and cytokeratin 7 was restricted to the cells from the upper layer. The kinetics of receptor biosynthesis and processing was similar to that reported for rabbit mammary gland and rat liver. The receptor was cleaved at the apical cell surface and release of secretory component into the apical medium occurred with a half-time of approximately 2 h. Selective cell surface trypsinization combined with pulse-chase experiments served to determine at which cell surface domain newly synthesized receptor appeared first. The receptor was digested with a half-time of approximately 60 min with trypsin present in the basolateral medium and 90 min with apical trypsin. These data are consistent with selective targeting of newly synthesized receptor to the basolateral surface. The results indicate that transcytosis of the receptor from basolateral to apical membrane in the presence or the absence of its ligand requires approximately 30 min. Cleavage of the receptor by endogenous protease is not concomitant with its appearance at the apical surface, but requires additional time, thus explaining the presence of intact receptor on the apical membrane.
format Text
id pubmed-2116109
institution National Center for Biotechnology Information
language English
publishDate 1990
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-21161092008-05-01 Polarized transport of the polymeric immunoglobulin receptor in transfected rabbit mammary epithelial cells J Cell Biol Articles A cDNA for the rabbit low Mr polymeric immunoglobulin (poly-Ig) receptor was expressed in an immortalized rabbit mammary cell line. The intracellular routing of the receptor and its cell surface expression was analyzed in stably transfected cells grown on permeable supports. Initially the cells formed a monolayer with no transmural electrical resistance. All monolayer cells expressed the poly-Ig receptor and cytokeratin 7 filaments characteristic of luminal mammary cells but absent in myoepithelial cells. Within 7 d in culture, the cells underwent cytodifferentiation and formed a bilayer with a transepithelial electrical resistance of approximately 500 omega x cm2. Upper layer cells formed tight junctions with adjacent cells and gap junctions with basal cells. Expression of the poly-Ig receptor and cytokeratin 7 was restricted to the cells from the upper layer. The kinetics of receptor biosynthesis and processing was similar to that reported for rabbit mammary gland and rat liver. The receptor was cleaved at the apical cell surface and release of secretory component into the apical medium occurred with a half-time of approximately 2 h. Selective cell surface trypsinization combined with pulse-chase experiments served to determine at which cell surface domain newly synthesized receptor appeared first. The receptor was digested with a half-time of approximately 60 min with trypsin present in the basolateral medium and 90 min with apical trypsin. These data are consistent with selective targeting of newly synthesized receptor to the basolateral surface. The results indicate that transcytosis of the receptor from basolateral to apical membrane in the presence or the absence of its ligand requires approximately 30 min. Cleavage of the receptor by endogenous protease is not concomitant with its appearance at the apical surface, but requires additional time, thus explaining the presence of intact receptor on the apical membrane. The Rockefeller University Press 1990-04-01 /pmc/articles/PMC2116109/ /pubmed/1691196 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
Polarized transport of the polymeric immunoglobulin receptor in transfected rabbit mammary epithelial cells
title Polarized transport of the polymeric immunoglobulin receptor in transfected rabbit mammary epithelial cells
title_full Polarized transport of the polymeric immunoglobulin receptor in transfected rabbit mammary epithelial cells
title_fullStr Polarized transport of the polymeric immunoglobulin receptor in transfected rabbit mammary epithelial cells
title_full_unstemmed Polarized transport of the polymeric immunoglobulin receptor in transfected rabbit mammary epithelial cells
title_short Polarized transport of the polymeric immunoglobulin receptor in transfected rabbit mammary epithelial cells
title_sort polarized transport of the polymeric immunoglobulin receptor in transfected rabbit mammary epithelial cells
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2116109/
https://www.ncbi.nlm.nih.gov/pubmed/1691196