Cargando…

Studies on the mechanisms of autophagy: formation of the autophagic vacuole

Autophagic vacuoles form within 15 min of perfusing a liver with amino acid-depleted medium. These vacuoles are bound by a "smooth" double membrane and do not contain acid phosphatase activity. In an attempt to identify the membrane source of these vacuoles, I have used morphological techn...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1990
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2116114/
https://www.ncbi.nlm.nih.gov/pubmed/2351689
_version_ 1782140815258157056
collection PubMed
description Autophagic vacuoles form within 15 min of perfusing a liver with amino acid-depleted medium. These vacuoles are bound by a "smooth" double membrane and do not contain acid phosphatase activity. In an attempt to identify the membrane source of these vacuoles, I have used morphological techniques combined with immunological probes to localize specific membrane antigens to the limiting membranes of newly formed or nascent autophagic vacuoles. Antibodies to three integral membrane proteins of the plasma membrane (CE9, HA4, and epidermal growth factor receptor) and one of the Golgi apparatus (sialyltransferase) did not label these vacuoles. Internalized epidermal growth factor and its membrane receptor were not found in nascent autophagic vacuoles but were present in lysosome-like degradative autophagic vacuoles. All these results suggested that autophagic vacuoles were not formed from plasma membrane, Golgi apparatus, or endosome constituents. Antisera prepared against integral membrane proteins (14, 25, and 40 kD) of the RER was found to label the inner and outer limiting membranes of almost all nascent autophagic vacuoles. In addition, ribophorin II was identified at the limiting membranes of many nascent autophagic vacuoles. Finally, secretory proteins, rat serum albumin and alpha 2u- globulin, were localized to the lumen of the RER and to the intramembrane space between the inner and outer membranes of some of these vacuoles. The results were consistent with the formation of autophagic vacuoles from ribosome-free regions of the RER.
format Text
id pubmed-2116114
institution National Center for Biotechnology Information
language English
publishDate 1990
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-21161142008-05-01 Studies on the mechanisms of autophagy: formation of the autophagic vacuole J Cell Biol Articles Autophagic vacuoles form within 15 min of perfusing a liver with amino acid-depleted medium. These vacuoles are bound by a "smooth" double membrane and do not contain acid phosphatase activity. In an attempt to identify the membrane source of these vacuoles, I have used morphological techniques combined with immunological probes to localize specific membrane antigens to the limiting membranes of newly formed or nascent autophagic vacuoles. Antibodies to three integral membrane proteins of the plasma membrane (CE9, HA4, and epidermal growth factor receptor) and one of the Golgi apparatus (sialyltransferase) did not label these vacuoles. Internalized epidermal growth factor and its membrane receptor were not found in nascent autophagic vacuoles but were present in lysosome-like degradative autophagic vacuoles. All these results suggested that autophagic vacuoles were not formed from plasma membrane, Golgi apparatus, or endosome constituents. Antisera prepared against integral membrane proteins (14, 25, and 40 kD) of the RER was found to label the inner and outer limiting membranes of almost all nascent autophagic vacuoles. In addition, ribophorin II was identified at the limiting membranes of many nascent autophagic vacuoles. Finally, secretory proteins, rat serum albumin and alpha 2u- globulin, were localized to the lumen of the RER and to the intramembrane space between the inner and outer membranes of some of these vacuoles. The results were consistent with the formation of autophagic vacuoles from ribosome-free regions of the RER. The Rockefeller University Press 1990-06-01 /pmc/articles/PMC2116114/ /pubmed/2351689 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
Studies on the mechanisms of autophagy: formation of the autophagic vacuole
title Studies on the mechanisms of autophagy: formation of the autophagic vacuole
title_full Studies on the mechanisms of autophagy: formation of the autophagic vacuole
title_fullStr Studies on the mechanisms of autophagy: formation of the autophagic vacuole
title_full_unstemmed Studies on the mechanisms of autophagy: formation of the autophagic vacuole
title_short Studies on the mechanisms of autophagy: formation of the autophagic vacuole
title_sort studies on the mechanisms of autophagy: formation of the autophagic vacuole
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2116114/
https://www.ncbi.nlm.nih.gov/pubmed/2351689