Cargando…
Role of PDGF-A expression in the control of vascular smooth muscle cell growth by transforming growth factor-beta
Transforming growth factor-beta (TGF-beta) is a multifunctional regulatory peptide that can inhibit or promote the proliferation of cultured vascular smooth muscle cells (SMCs), depending on cell density (Majack, R. A. 1987. J. Cell Biol. 105:465-471). In this study, we have examined the mechanisms...
Formato: | Texto |
---|---|
Lenguaje: | English |
Publicado: |
The Rockefeller University Press
1990
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2116160/ https://www.ncbi.nlm.nih.gov/pubmed/1694856 |
_version_ | 1782140826005012480 |
---|---|
collection | PubMed |
description | Transforming growth factor-beta (TGF-beta) is a multifunctional regulatory peptide that can inhibit or promote the proliferation of cultured vascular smooth muscle cells (SMCs), depending on cell density (Majack, R. A. 1987. J. Cell Biol. 105:465-471). In this study, we have examined the mechanisms underlying the growth-promoting effects of TGF- beta in confluent SMC cultures. In mitogenesis assays using confluent cells, TGF-beta was found to potentiate the stimulatory effects of serum, PDGF, and basic fibroblast growth factor (bFGF), and was shown to act individually as a mitogen for SMC. In gene and protein expression experiments, TGF-beta was found to regulate the expression of PDGF-A and thrombospondin, two potential mediators of SMC proliferative events. The induction of thrombospondin protein and mRNA was density-dependent, delayed relative to its induction by PDGF and, based on cycloheximide experiments, appeared to depend on the de novo synthesis of an intermediary protein (probably PDGF-A). The relationship between PDGF-A expression and TGF-beta-mediated mitogenesis was investigated, and it was determined that a PDGF-like activity (probably PDGF-A) was the biological mediator of the growth- stimulatory effects of TGF-beta on confluent SMC. The effects of purified homodimers of PDGF-A on SMC replication were investigated, and it was determined that PDGF-AA was mitogenic for cultured SMC, particularly when used in combination with other growth factors such as bFGF and PDGF-BB. The data suggest several molecular mechanisms that may account for the ability of TGF-beta to promote the growth of confluent SMC in culture. |
format | Text |
id | pubmed-2116160 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 1990 |
publisher | The Rockefeller University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-21161602008-05-01 Role of PDGF-A expression in the control of vascular smooth muscle cell growth by transforming growth factor-beta J Cell Biol Articles Transforming growth factor-beta (TGF-beta) is a multifunctional regulatory peptide that can inhibit or promote the proliferation of cultured vascular smooth muscle cells (SMCs), depending on cell density (Majack, R. A. 1987. J. Cell Biol. 105:465-471). In this study, we have examined the mechanisms underlying the growth-promoting effects of TGF- beta in confluent SMC cultures. In mitogenesis assays using confluent cells, TGF-beta was found to potentiate the stimulatory effects of serum, PDGF, and basic fibroblast growth factor (bFGF), and was shown to act individually as a mitogen for SMC. In gene and protein expression experiments, TGF-beta was found to regulate the expression of PDGF-A and thrombospondin, two potential mediators of SMC proliferative events. The induction of thrombospondin protein and mRNA was density-dependent, delayed relative to its induction by PDGF and, based on cycloheximide experiments, appeared to depend on the de novo synthesis of an intermediary protein (probably PDGF-A). The relationship between PDGF-A expression and TGF-beta-mediated mitogenesis was investigated, and it was determined that a PDGF-like activity (probably PDGF-A) was the biological mediator of the growth- stimulatory effects of TGF-beta on confluent SMC. The effects of purified homodimers of PDGF-A on SMC replication were investigated, and it was determined that PDGF-AA was mitogenic for cultured SMC, particularly when used in combination with other growth factors such as bFGF and PDGF-BB. The data suggest several molecular mechanisms that may account for the ability of TGF-beta to promote the growth of confluent SMC in culture. The Rockefeller University Press 1990-07-01 /pmc/articles/PMC2116160/ /pubmed/1694856 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/). |
spellingShingle | Articles Role of PDGF-A expression in the control of vascular smooth muscle cell growth by transforming growth factor-beta |
title | Role of PDGF-A expression in the control of vascular smooth muscle cell growth by transforming growth factor-beta |
title_full | Role of PDGF-A expression in the control of vascular smooth muscle cell growth by transforming growth factor-beta |
title_fullStr | Role of PDGF-A expression in the control of vascular smooth muscle cell growth by transforming growth factor-beta |
title_full_unstemmed | Role of PDGF-A expression in the control of vascular smooth muscle cell growth by transforming growth factor-beta |
title_short | Role of PDGF-A expression in the control of vascular smooth muscle cell growth by transforming growth factor-beta |
title_sort | role of pdgf-a expression in the control of vascular smooth muscle cell growth by transforming growth factor-beta |
topic | Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2116160/ https://www.ncbi.nlm.nih.gov/pubmed/1694856 |