Cargando…

Binding of brush border myosin I to phospholipid vesicles

The actin filament core within each microvillus of the intestinal epithelial cell is attached laterally to the plasma membrane by brush border (BB) myosin I, a protein-calmodulin complex belonging to the myosin I class of actin-based mechanoenzymes. In this report, the binding of BB myosin I to pure...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1990
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2116197/
https://www.ncbi.nlm.nih.gov/pubmed/2143194
Descripción
Sumario:The actin filament core within each microvillus of the intestinal epithelial cell is attached laterally to the plasma membrane by brush border (BB) myosin I, a protein-calmodulin complex belonging to the myosin I class of actin-based mechanoenzymes. In this report, the binding of BB myosin I to pure phospholipid vesicles was examined and characterized. BB myosin I demonstrated saturable binding to liposomes composed of anionic phospholipids, but did not associate with liposomes composed of only neutral phospholipids. The binding of BB myosin I to phosphatidylserine and phosphatidylglycerol vesicles reached saturation at 4-5 x 10(-3) nmol protein/nmol phospholipid, while the apparent dissociation constant was determined to be 1-3 x 10(-7) M. Similar to the free protein, membrane-associated BB myosin I bound F-actin in an ATP-sensitive manner and demonstrated actin-activated Mg-ATPase activity. Immunoblot analysis of peptides generated from controlled proteolysis of vesicle-bound BB myosin I provided structural information concerning the site responsible for the membrane interaction. Immunoblot staining with domain-specific mAbs revealed a series of COOH-terminal, liposome-associated peptides that were protected from digestion, suggesting that the membrane-binding domain is within the carboxy-terminal "tail" of the BB myosin I heavy chain.