Cargando…

Human microvascular endothelial cells use beta 1 and beta 3 integrin receptor complexes to attach to laminin

Microvascular endothelial cells (MEC) use a set of surface receptors to adhere not only to the vascular basement membrane but, during angiogenic stimulation, to the interstitium. We examined how cultured human MEC interact with laminin-rich basement membranes. By using a panel of monoclonal antibodi...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1990
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2116258/
https://www.ncbi.nlm.nih.gov/pubmed/1697296
Descripción
Sumario:Microvascular endothelial cells (MEC) use a set of surface receptors to adhere not only to the vascular basement membrane but, during angiogenic stimulation, to the interstitium. We examined how cultured human MEC interact with laminin-rich basement membranes. By using a panel of monoclonal antibodies, we found that MEC cells express a number of integrin-related receptor complexes, including alpha 1 beta 1, alpha 2 beta 1, alpha 3 beta 1, alpha 5 beta 1, alpha 6 beta 1, alpha V beta 3. Attachment to laminin, a major adhesive protein in basement membranes, was studied in detail. Blocking monoclonal antibodies specific to different integrin receptor complexes showed that the alpha 6 beta 1 complex was important for MEC adhesion to laminin. In addition, blocking antibody also implicated the vitronectin receptor (alpha V beta 3) in laminin adhesion. We used ligand affinity chromatography of detergent-solubilized receptor complexes to further define receptor specificity. On laminin-Sepharose columns, we identified several integrin receptor complexes whose affinity for the ligand was dependent on the type of divalent cation present. Several beta 1 complexes, including alpha 1 beta 1, alpha 2 beta 1, and alpha 6 beta 1 bound strongly to laminin. In agreement with the antibody blocking experiments, alpha V beta 3 was found to bind well to laminin. However, unlike binding to its other ligands (e.g., vitronectin, fibrinogen, von Willebrand factor), alpha V beta 3 interaction with laminin did not appear to be Arg-Gly-Asp (RGD) sensitive. Finally, immunofluorescent staining demonstrated both beta 1 and beta 3 complexes in vinculin-positive focal adhesion plaques on the basal surface of MEC adhering to laminin-coated substrates. The results indicate that both these subfamilies of integrin heterodimers are involved in promoting MEC adhesion to laminin and the vascular basement membrane.