Cargando…

Accumulation of membrane glycoproteins in lysosomes requires a tyrosine residue at a particular position in the cytoplasmic tail

Human lysosome membrane glycoprotein h-lamp-1 is a highly N- glycosylated protein found predominantly in lysosomes, with low levels present at the cell surface. The signal required for delivery of h-lamp- 1 to lysosomes was investigated by analyzing the intracellular distribution of h-lamp-1 with al...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1990
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2116305/
https://www.ncbi.nlm.nih.gov/pubmed/2391371
Descripción
Sumario:Human lysosome membrane glycoprotein h-lamp-1 is a highly N- glycosylated protein found predominantly in lysosomes, with low levels present at the cell surface. The signal required for delivery of h-lamp- 1 to lysosomes was investigated by analyzing the intracellular distribution of h-lamp-1 with altered amino acid sequences expressed from mutated cDNA clones. A cytoplasmic tail tyrosine residue found conserved in chicken, rodent, and human deduced amino acid sequences was discovered to be necessary for efficient lysosomal transport of h- lamp-1 in COS-1 cells. In addition, the position of the tyrosine residue relative to the membrane and carboxyl terminus also determined lysosomal expression. Supplanting the wild-type h-lamp-1 cytoplasmic tail onto a cell surface reporter glycoprotein was sufficient to cause redistribution of the chimera to lysosomes. A similar chimeric protein replacing the cytoplasmic tyrosine residue with an alanine was not expressed in lysosomes. Altered proteins that were not transported to lysosomes were found to accumulate at the cell surface, and unlike wild- type lysosomal membrane glycoproteins, were unable to undergo endocytosis. These data indicate that lysosomal membrane glycoproteins are sorted to lysosomes by a cytoplasmic signal containing tyrosine in a specific position, and the sorting signal may be recognized both in the trans-Golgi network and at the cell surface.