Cargando…
Multiple forms of chicken alpha 3(VI) collagen chain generated by alternative splicing in type A repeated domains
Type VI collagen is a structurally unique component widely distributed in connective tissues. Its molecular structure consists of monomers that have the potential to assemble intracellularly into dimers and tetramers which, once secreted, can form microfilaments by end-to-end association. Individual...
Formato: | Texto |
---|---|
Lenguaje: | English |
Publicado: |
The Rockefeller University Press
1990
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2116307/ https://www.ncbi.nlm.nih.gov/pubmed/1977751 |
Sumario: | Type VI collagen is a structurally unique component widely distributed in connective tissues. Its molecular structure consists of monomers that have the potential to assemble intracellularly into dimers and tetramers which, once secreted, can form microfilaments by end-to-end association. Individual monomers are composed of chains of Mr = approximately 140,000 (alpha 1 and alpha 2) and greater than 300,000 (alpha 3). Type VI collagen molecules contain a short triple helix with large globular domains at both ends. These domains are made for their greatest part of repetitive units similar to type A repeats of von Willebrand Factor. The alpha 3(VI) chain, contributing most of the mass of the NH2-terminal globule, appeared heterogenous both at the mRNA and protein level. Several alpha 3(VI)-specific clones that lack the sequences corresponding to repeats A8 and A6 were isolated from a chicken aorta cDNA library. Northern blot hybridization of poly (A+)- enriched RNA from chicken gizzard with cDNA fragments corresponding to several individual type A repeats showed that A8- and A6-specific probes did not hybridize to the lower Mr transcripts. Clones spanning approximately 20 kb of the 5'-end of the alpha 3(VI) gene were isolated from a chicken genomic library and subjected to analysis by restriction mapping, Southern blotting, and selective sequencing of the intron-exon boundaries. At the most 5'-end of the gene an additional type A repeat (A9), previously undetected in cDNA clones, was identified. Furthermore, it was determined that the presumed signal peptide and repeats A9 through A6 are encoded within individual exons. Reverse transcription and polymerase chain reaction of aorta RNA suggested that a mechanism of alternative mRNA splicing by a phenomenon of exon skipping generates alpha 3(VI) isoform variants that contain different numbers of type A repeats. Immunohistochemistry of frozen sections of chicken embryo tissues with repeat-specific mAbs showed that an antibody directed against a conditional exon has a more restricted tissue distribution compared to an antibody against a constitutive exon. |
---|