Cargando…

The chloroplast import receptor is an integral membrane protein of chloroplast envelope contact sites

A chloroplast import receptor from pea, previously identified by antiidiotypic antibodies was purified and its primary structure deduced from its cDNA sequence. The protein is a 36-kD integral membrane protein (p36) with eight potential transmembrane segments. Fab prepared from monospecific anti-p36...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1990
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2116326/
https://www.ncbi.nlm.nih.gov/pubmed/2172258
_version_ 1782140864892502016
collection PubMed
description A chloroplast import receptor from pea, previously identified by antiidiotypic antibodies was purified and its primary structure deduced from its cDNA sequence. The protein is a 36-kD integral membrane protein (p36) with eight potential transmembrane segments. Fab prepared from monospecific anti-p36 IgG inhibits the import of the ribulose-1,5- bisphosphate carboxylase small subunit precursor (pS) by interfering with pS binding at the chloroplast surface. Anti-p36 IgGs are able to immunoprecipitate a Triton X-100 soluble p36-pS complex, suggesting a direct interaction between p36 and pS. This immunoprecipitation was specific as it was abolished by a pS synthetic transit peptide, consistent with the transit sequence receptor function of p36. Immunoelectron microscopy localized p36 to regions of the outer chloroplast membrane that are in close contact with the inner chloroplast membrane. Comparison of the deduced sequence of pea p36 to that of other known proteins indicates a striking homology to a protein from spinach chloroplasts that was previously suggested to be the triose phosphate-3-phosphoglycerate-phosphate translocator (phosphate translocator) (Flugge, U. I., K. Fischer, A. Gross, W. Sebald, F. Lottspeich, and C. Eckerskorn. 1989. EMBO (Eur. Mol. Biol. Organ.) J. 8:39-46). However, incubation of Triton X-100 solubilized chloroplast envelope material with hydroxylapatite indicated that p36 was quantitatively absorbed, whereas previous reports have shown that phosphate translocator activity does not bind to hydroxylapatite (Flugge, U. I., and H. W. Heldt. 1981. Biochim. Biophys. Acta. 638:296- 304. These data, in addition to the topology and import inhibition data presented in this report support the assignment of p36 as a receptor for chloroplast protein import, and argue against the assignment of the spinach homologue of this protein as the chloroplast phosphate translocator.
format Text
id pubmed-2116326
institution National Center for Biotechnology Information
language English
publishDate 1990
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-21163262008-05-01 The chloroplast import receptor is an integral membrane protein of chloroplast envelope contact sites J Cell Biol Articles A chloroplast import receptor from pea, previously identified by antiidiotypic antibodies was purified and its primary structure deduced from its cDNA sequence. The protein is a 36-kD integral membrane protein (p36) with eight potential transmembrane segments. Fab prepared from monospecific anti-p36 IgG inhibits the import of the ribulose-1,5- bisphosphate carboxylase small subunit precursor (pS) by interfering with pS binding at the chloroplast surface. Anti-p36 IgGs are able to immunoprecipitate a Triton X-100 soluble p36-pS complex, suggesting a direct interaction between p36 and pS. This immunoprecipitation was specific as it was abolished by a pS synthetic transit peptide, consistent with the transit sequence receptor function of p36. Immunoelectron microscopy localized p36 to regions of the outer chloroplast membrane that are in close contact with the inner chloroplast membrane. Comparison of the deduced sequence of pea p36 to that of other known proteins indicates a striking homology to a protein from spinach chloroplasts that was previously suggested to be the triose phosphate-3-phosphoglycerate-phosphate translocator (phosphate translocator) (Flugge, U. I., K. Fischer, A. Gross, W. Sebald, F. Lottspeich, and C. Eckerskorn. 1989. EMBO (Eur. Mol. Biol. Organ.) J. 8:39-46). However, incubation of Triton X-100 solubilized chloroplast envelope material with hydroxylapatite indicated that p36 was quantitatively absorbed, whereas previous reports have shown that phosphate translocator activity does not bind to hydroxylapatite (Flugge, U. I., and H. W. Heldt. 1981. Biochim. Biophys. Acta. 638:296- 304. These data, in addition to the topology and import inhibition data presented in this report support the assignment of p36 as a receptor for chloroplast protein import, and argue against the assignment of the spinach homologue of this protein as the chloroplast phosphate translocator. The Rockefeller University Press 1990-11-01 /pmc/articles/PMC2116326/ /pubmed/2172258 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
The chloroplast import receptor is an integral membrane protein of chloroplast envelope contact sites
title The chloroplast import receptor is an integral membrane protein of chloroplast envelope contact sites
title_full The chloroplast import receptor is an integral membrane protein of chloroplast envelope contact sites
title_fullStr The chloroplast import receptor is an integral membrane protein of chloroplast envelope contact sites
title_full_unstemmed The chloroplast import receptor is an integral membrane protein of chloroplast envelope contact sites
title_short The chloroplast import receptor is an integral membrane protein of chloroplast envelope contact sites
title_sort chloroplast import receptor is an integral membrane protein of chloroplast envelope contact sites
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2116326/
https://www.ncbi.nlm.nih.gov/pubmed/2172258