Cargando…

Normal myogenic cells from newborn mice restore normal histology to degenerating muscles of the mdx mouse

Dystrophin deficiency in skeletal muscle of the x-linked dystrophic (mdx) mouse can be partially remedied by implantation of normal muscle precursor cells (mpc) (Partridge, T. A., J. E. Morgan, G. R. Coulton, E. P. Hoffman, and L. M. Kunkel. 1989. Nature (Lond.). 337:176-179). However, it is difficu...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1990
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2116381/
https://www.ncbi.nlm.nih.gov/pubmed/2277066
_version_ 1782140877823541248
collection PubMed
description Dystrophin deficiency in skeletal muscle of the x-linked dystrophic (mdx) mouse can be partially remedied by implantation of normal muscle precursor cells (mpc) (Partridge, T. A., J. E. Morgan, G. R. Coulton, E. P. Hoffman, and L. M. Kunkel. 1989. Nature (Lond.). 337:176-179). However, it is difficult to determine whether this biochemical "rescue" results in any improvement in the structure or function of the treated muscle, because the vigorous regeneration of mdx muscle more than compensates for the degeneration (Coulton, G. R., N. A. Curtin, J. E. Morgan, and T. A. Partridge. 1988. Neuropathol. Appl. Neurobiol. 14:299- 314). By using x-ray irradiation to prevent mpc proliferation, it is possible to study loss of mdx muscle fibers without the complicating effect of simultaneous fiber regeneration. Thus, improvements in fiber survival resulting from any potential therapy can be detected easily (Wakeford, S., D. J. Watt, and T. A. Patridge. 1990. Muscle & Nerve.) Here, we have implanted normal mpc, obtained from newborn mice, into such preirradiated mdx muscles, finding that it is far more extensively permeated and replaced by implanted mpc than is nonirradiated mdx muscle; this is evident both from analysis of glucose-6-phosphate isomerase isoenzyme markers and from immunoblots and immunostaining of dystrophin in the treated muscles. Incorporation of normal mpc markedly reduces the loss of muscle fibers and the deterioration of muscle structure which otherwise occurs in irradiated mdx muscles. Surprisingly, the regenerated fibers are largely peripherally nucleated, whereas regenerated mouse skeletal muscle fibers are normally centrally nucleated. We attribute this regeneration of apparently normal muscle to the tendency of newborn mouse mpc to recapitulate their neonatal ontogeny, even when grafted into 3-wk-old degenerating muscle.
format Text
id pubmed-2116381
institution National Center for Biotechnology Information
language English
publishDate 1990
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-21163812008-05-01 Normal myogenic cells from newborn mice restore normal histology to degenerating muscles of the mdx mouse J Cell Biol Articles Dystrophin deficiency in skeletal muscle of the x-linked dystrophic (mdx) mouse can be partially remedied by implantation of normal muscle precursor cells (mpc) (Partridge, T. A., J. E. Morgan, G. R. Coulton, E. P. Hoffman, and L. M. Kunkel. 1989. Nature (Lond.). 337:176-179). However, it is difficult to determine whether this biochemical "rescue" results in any improvement in the structure or function of the treated muscle, because the vigorous regeneration of mdx muscle more than compensates for the degeneration (Coulton, G. R., N. A. Curtin, J. E. Morgan, and T. A. Partridge. 1988. Neuropathol. Appl. Neurobiol. 14:299- 314). By using x-ray irradiation to prevent mpc proliferation, it is possible to study loss of mdx muscle fibers without the complicating effect of simultaneous fiber regeneration. Thus, improvements in fiber survival resulting from any potential therapy can be detected easily (Wakeford, S., D. J. Watt, and T. A. Patridge. 1990. Muscle & Nerve.) Here, we have implanted normal mpc, obtained from newborn mice, into such preirradiated mdx muscles, finding that it is far more extensively permeated and replaced by implanted mpc than is nonirradiated mdx muscle; this is evident both from analysis of glucose-6-phosphate isomerase isoenzyme markers and from immunoblots and immunostaining of dystrophin in the treated muscles. Incorporation of normal mpc markedly reduces the loss of muscle fibers and the deterioration of muscle structure which otherwise occurs in irradiated mdx muscles. Surprisingly, the regenerated fibers are largely peripherally nucleated, whereas regenerated mouse skeletal muscle fibers are normally centrally nucleated. We attribute this regeneration of apparently normal muscle to the tendency of newborn mouse mpc to recapitulate their neonatal ontogeny, even when grafted into 3-wk-old degenerating muscle. The Rockefeller University Press 1990-12-01 /pmc/articles/PMC2116381/ /pubmed/2277066 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
Normal myogenic cells from newborn mice restore normal histology to degenerating muscles of the mdx mouse
title Normal myogenic cells from newborn mice restore normal histology to degenerating muscles of the mdx mouse
title_full Normal myogenic cells from newborn mice restore normal histology to degenerating muscles of the mdx mouse
title_fullStr Normal myogenic cells from newborn mice restore normal histology to degenerating muscles of the mdx mouse
title_full_unstemmed Normal myogenic cells from newborn mice restore normal histology to degenerating muscles of the mdx mouse
title_short Normal myogenic cells from newborn mice restore normal histology to degenerating muscles of the mdx mouse
title_sort normal myogenic cells from newborn mice restore normal histology to degenerating muscles of the mdx mouse
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2116381/
https://www.ncbi.nlm.nih.gov/pubmed/2277066