Cargando…

Regulation of binding of subfragment 1 in isolated rigor myofibrils

A steric-hindrance model has been used to explain the regulation of muscle contraction by tropomyosin-troponin complex. The regulation of binding was studied by microscopic observation of mixtures of fluorescent subfragment 1 (S1) with rigor myofibrils at different actin- to-S1 ratios and in the pre...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1990
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2116422/
https://www.ncbi.nlm.nih.gov/pubmed/2148565
_version_ 1782140887452614656
collection PubMed
description A steric-hindrance model has been used to explain the regulation of muscle contraction by tropomyosin-troponin complex. The regulation of binding was studied by microscopic observation of mixtures of fluorescent subfragment 1 (S1) with rigor myofibrils at different actin- to-S1 ratios and in the presence and absence of calcium. Procedures were adapted to protect the critical thiols of S1 before conjugation to thiol-specific fluorochromes, this giving fluorescent S1 with unaltered enzyme activity. S1 binding was greatest in the I band (except at the Z- lines) in the presence of calcium regardless of the [S1]. The patterns in the absence of calcium depended on the actin-to-S1 ratios: low [S1], binding in the myosin-actin overlap region; intermediate [S1], highest binding at the A-I junction; high [S1], greatest binding in the I-band. The two distinct binding patterns observed at low [S1] were demonstrated by dual-channel fluorescence microscopy when myofibrils were sequentially incubated with fluorescent S1 without calcium followed by a different fluorescent S1 with calcium. These observations support the concept of rigor activation of actin sites. The change in the pattern upon increasing [S1] without calcium demonstrate cooperative interactions along the thin filament. However, these interactions (under the conditions used without calcium) do not appear to extend over greater than 2-3 tropomyosin-troponin-7 actin functional units.
format Text
id pubmed-2116422
institution National Center for Biotechnology Information
language English
publishDate 1990
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-21164222008-05-01 Regulation of binding of subfragment 1 in isolated rigor myofibrils J Cell Biol Articles A steric-hindrance model has been used to explain the regulation of muscle contraction by tropomyosin-troponin complex. The regulation of binding was studied by microscopic observation of mixtures of fluorescent subfragment 1 (S1) with rigor myofibrils at different actin- to-S1 ratios and in the presence and absence of calcium. Procedures were adapted to protect the critical thiols of S1 before conjugation to thiol-specific fluorochromes, this giving fluorescent S1 with unaltered enzyme activity. S1 binding was greatest in the I band (except at the Z- lines) in the presence of calcium regardless of the [S1]. The patterns in the absence of calcium depended on the actin-to-S1 ratios: low [S1], binding in the myosin-actin overlap region; intermediate [S1], highest binding at the A-I junction; high [S1], greatest binding in the I-band. The two distinct binding patterns observed at low [S1] were demonstrated by dual-channel fluorescence microscopy when myofibrils were sequentially incubated with fluorescent S1 without calcium followed by a different fluorescent S1 with calcium. These observations support the concept of rigor activation of actin sites. The change in the pattern upon increasing [S1] without calcium demonstrate cooperative interactions along the thin filament. However, these interactions (under the conditions used without calcium) do not appear to extend over greater than 2-3 tropomyosin-troponin-7 actin functional units. The Rockefeller University Press 1990-12-01 /pmc/articles/PMC2116422/ /pubmed/2148565 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
Regulation of binding of subfragment 1 in isolated rigor myofibrils
title Regulation of binding of subfragment 1 in isolated rigor myofibrils
title_full Regulation of binding of subfragment 1 in isolated rigor myofibrils
title_fullStr Regulation of binding of subfragment 1 in isolated rigor myofibrils
title_full_unstemmed Regulation of binding of subfragment 1 in isolated rigor myofibrils
title_short Regulation of binding of subfragment 1 in isolated rigor myofibrils
title_sort regulation of binding of subfragment 1 in isolated rigor myofibrils
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2116422/
https://www.ncbi.nlm.nih.gov/pubmed/2148565