Cargando…

Effects of gastrointestinal tissue structure on computed dipole vectors

BACKGROUND: Digestive diseases are difficult to assess without using invasive measurements. Non-invasive measurements of body surface electrical and magnetic activity resulting from underlying gastro-intestinal activity are not widely used, in large due to their difficulty in interpretation. Mathema...

Descripción completa

Detalles Bibliográficos
Autores principales: Austin, Travis M, Li, Liren, Pullan, Andrew J, Cheng, Leo K
Formato: Texto
Lenguaje:English
Publicado: BioMed Central 2007
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2117001/
https://www.ncbi.nlm.nih.gov/pubmed/17953773
http://dx.doi.org/10.1186/1475-925X-6-39
_version_ 1782140891880751104
author Austin, Travis M
Li, Liren
Pullan, Andrew J
Cheng, Leo K
author_facet Austin, Travis M
Li, Liren
Pullan, Andrew J
Cheng, Leo K
author_sort Austin, Travis M
collection PubMed
description BACKGROUND: Digestive diseases are difficult to assess without using invasive measurements. Non-invasive measurements of body surface electrical and magnetic activity resulting from underlying gastro-intestinal activity are not widely used, in large due to their difficulty in interpretation. Mathematical modelling of the underlying processes may help provide additional information. When modelling myoelectrical activity, it is common for the electrical field to be represented by equivalent dipole sources. The gastrointestinal system is comprised of alternating layers of smooth muscle (SM) cells and Interstitial Cells of Cajal (ICC). In addition the small intestine has regions of high curvature as the intestine bends back upon itself. To eventually use modelling diagnostically, we must improve our understanding of the effect that intestinal structure has on dipole vector behaviour. METHODS: Normal intestine electrical behaviour was simulated on simple geometries using a monodomain formulation. The myoelectrical fields were then represented by their dipole vectors and an examination on the effect of structure was undertaken. The 3D intestine model was compared to a more computationally efficient 1D representation to determine the differences on the resultant dipole vectors. In addition, the conductivity values and the thickness of the different muscle layers were varied in the 3D model and the effects on the dipole vectors were investigated. RESULTS: The dipole vector orientations were largely affected by the curvature and by a transmural gradient in the electrical wavefront caused by the different properties of the SM and ICC layers. This gradient caused the dipoles to be oriented at an angle to the principal direction of electrical propagation. This angle increased when the ratio of the longitudinal and circular muscle was increased or when the the conductivity along and across the layers was increased. The 1D model was able to represent the geometry of the small intestine and successfully captured the propagation of the slow wave down the length of the mesh, however, it was unable to represent transmural diffusion within each layer, meaning the equivalent dipole sources were missing a lateral component and a reduced magnitude when compared to the full 3D models. CONCLUSION: The structure of the intestinal wall affected the potential gradient through the wall and the orientation and magnitude of the dipole vector. We have seen that the models with a symmetrical wall structure and extreme anisotropic conductivities had similar characteristics in their dipole magnitudes and orientations to the 1D model. If efficient 1D models are used instead of 3D models, then both the differences in magnitude and orientation need to be accounted for.
format Text
id pubmed-2117001
institution National Center for Biotechnology Information
language English
publishDate 2007
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-21170012007-12-06 Effects of gastrointestinal tissue structure on computed dipole vectors Austin, Travis M Li, Liren Pullan, Andrew J Cheng, Leo K Biomed Eng Online Research BACKGROUND: Digestive diseases are difficult to assess without using invasive measurements. Non-invasive measurements of body surface electrical and magnetic activity resulting from underlying gastro-intestinal activity are not widely used, in large due to their difficulty in interpretation. Mathematical modelling of the underlying processes may help provide additional information. When modelling myoelectrical activity, it is common for the electrical field to be represented by equivalent dipole sources. The gastrointestinal system is comprised of alternating layers of smooth muscle (SM) cells and Interstitial Cells of Cajal (ICC). In addition the small intestine has regions of high curvature as the intestine bends back upon itself. To eventually use modelling diagnostically, we must improve our understanding of the effect that intestinal structure has on dipole vector behaviour. METHODS: Normal intestine electrical behaviour was simulated on simple geometries using a monodomain formulation. The myoelectrical fields were then represented by their dipole vectors and an examination on the effect of structure was undertaken. The 3D intestine model was compared to a more computationally efficient 1D representation to determine the differences on the resultant dipole vectors. In addition, the conductivity values and the thickness of the different muscle layers were varied in the 3D model and the effects on the dipole vectors were investigated. RESULTS: The dipole vector orientations were largely affected by the curvature and by a transmural gradient in the electrical wavefront caused by the different properties of the SM and ICC layers. This gradient caused the dipoles to be oriented at an angle to the principal direction of electrical propagation. This angle increased when the ratio of the longitudinal and circular muscle was increased or when the the conductivity along and across the layers was increased. The 1D model was able to represent the geometry of the small intestine and successfully captured the propagation of the slow wave down the length of the mesh, however, it was unable to represent transmural diffusion within each layer, meaning the equivalent dipole sources were missing a lateral component and a reduced magnitude when compared to the full 3D models. CONCLUSION: The structure of the intestinal wall affected the potential gradient through the wall and the orientation and magnitude of the dipole vector. We have seen that the models with a symmetrical wall structure and extreme anisotropic conductivities had similar characteristics in their dipole magnitudes and orientations to the 1D model. If efficient 1D models are used instead of 3D models, then both the differences in magnitude and orientation need to be accounted for. BioMed Central 2007-10-22 /pmc/articles/PMC2117001/ /pubmed/17953773 http://dx.doi.org/10.1186/1475-925X-6-39 Text en Copyright © 2007 Austin et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( (http://creativecommons.org/licenses/by/2.0) ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research
Austin, Travis M
Li, Liren
Pullan, Andrew J
Cheng, Leo K
Effects of gastrointestinal tissue structure on computed dipole vectors
title Effects of gastrointestinal tissue structure on computed dipole vectors
title_full Effects of gastrointestinal tissue structure on computed dipole vectors
title_fullStr Effects of gastrointestinal tissue structure on computed dipole vectors
title_full_unstemmed Effects of gastrointestinal tissue structure on computed dipole vectors
title_short Effects of gastrointestinal tissue structure on computed dipole vectors
title_sort effects of gastrointestinal tissue structure on computed dipole vectors
topic Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2117001/
https://www.ncbi.nlm.nih.gov/pubmed/17953773
http://dx.doi.org/10.1186/1475-925X-6-39
work_keys_str_mv AT austintravism effectsofgastrointestinaltissuestructureoncomputeddipolevectors
AT liliren effectsofgastrointestinaltissuestructureoncomputeddipolevectors
AT pullanandrewj effectsofgastrointestinaltissuestructureoncomputeddipolevectors
AT chengleok effectsofgastrointestinaltissuestructureoncomputeddipolevectors