Cargando…

Modification and re-validation of the ethyl acetate-based multi-residue method for pesticides in produce

The ethyl acetate-based multi-residue method for determination of pesticide residues in produce has been modified for gas chromatographic (GC) analysis by implementation of dispersive solid-phase extraction (using primary–secondary amine and graphitized carbon black) and large-volume (20 μL) injecti...

Descripción completa

Detalles Bibliográficos
Autores principales: Mol, Hans G. J., Rooseboom, Astrid, van Dam, Ruud, Roding, Marleen, Arondeus, Karin, Sunarto, Suryati
Formato: Texto
Lenguaje:English
Publicado: Springer-Verlag 2007
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2117333/
https://www.ncbi.nlm.nih.gov/pubmed/17563885
http://dx.doi.org/10.1007/s00216-007-1357-1
_version_ 1782140901493047296
author Mol, Hans G. J.
Rooseboom, Astrid
van Dam, Ruud
Roding, Marleen
Arondeus, Karin
Sunarto, Suryati
author_facet Mol, Hans G. J.
Rooseboom, Astrid
van Dam, Ruud
Roding, Marleen
Arondeus, Karin
Sunarto, Suryati
author_sort Mol, Hans G. J.
collection PubMed
description The ethyl acetate-based multi-residue method for determination of pesticide residues in produce has been modified for gas chromatographic (GC) analysis by implementation of dispersive solid-phase extraction (using primary–secondary amine and graphitized carbon black) and large-volume (20 μL) injection. The same extract, before clean-up and after a change of solvent, was also analyzed by liquid chromatography with tandem mass spectrometry (LC–MS–MS). All aspects related to sample preparation were re-assessed with regard to ease and speed of the analysis. The principle of the extraction procedure (solvent, salt) was not changed, to avoid the possibility invalidating data acquired over past decades. The modifications were made with techniques currently commonly applied in routine laboratories, GC–MS and LC–MS–MS, in mind. The modified method enables processing (from homogenization until final extracts for both GC and LC) of 30 samples per eight hours per person. Limits of quantification (LOQs) of 0.01 mg kg(−1) were achieved with both GC–MS (full-scan acquisition, 10 mg matrix equivalent injected) and LC–MS–MS (2 mg injected) for most of the pesticides. Validation data for 341 pesticides and degradation products are presented. A compilation of analytical quality-control data for pesticides routinely analyzed by GC–MS (135 compounds) and LC–MS–MS (136 compounds) in over 100 different matrices, obtained over a period of 15 months, are also presented and discussed. At the 0.05 mg kg(−1) level acceptable recoveries were obtained for 93% (GC–MS) and 92% (LC–MS–MS) of pesticide–matrix combinations.
format Text
id pubmed-2117333
institution National Center for Biotechnology Information
language English
publishDate 2007
publisher Springer-Verlag
record_format MEDLINE/PubMed
spelling pubmed-21173332007-12-07 Modification and re-validation of the ethyl acetate-based multi-residue method for pesticides in produce Mol, Hans G. J. Rooseboom, Astrid van Dam, Ruud Roding, Marleen Arondeus, Karin Sunarto, Suryati Anal Bioanal Chem Original Paper The ethyl acetate-based multi-residue method for determination of pesticide residues in produce has been modified for gas chromatographic (GC) analysis by implementation of dispersive solid-phase extraction (using primary–secondary amine and graphitized carbon black) and large-volume (20 μL) injection. The same extract, before clean-up and after a change of solvent, was also analyzed by liquid chromatography with tandem mass spectrometry (LC–MS–MS). All aspects related to sample preparation were re-assessed with regard to ease and speed of the analysis. The principle of the extraction procedure (solvent, salt) was not changed, to avoid the possibility invalidating data acquired over past decades. The modifications were made with techniques currently commonly applied in routine laboratories, GC–MS and LC–MS–MS, in mind. The modified method enables processing (from homogenization until final extracts for both GC and LC) of 30 samples per eight hours per person. Limits of quantification (LOQs) of 0.01 mg kg(−1) were achieved with both GC–MS (full-scan acquisition, 10 mg matrix equivalent injected) and LC–MS–MS (2 mg injected) for most of the pesticides. Validation data for 341 pesticides and degradation products are presented. A compilation of analytical quality-control data for pesticides routinely analyzed by GC–MS (135 compounds) and LC–MS–MS (136 compounds) in over 100 different matrices, obtained over a period of 15 months, are also presented and discussed. At the 0.05 mg kg(−1) level acceptable recoveries were obtained for 93% (GC–MS) and 92% (LC–MS–MS) of pesticide–matrix combinations. Springer-Verlag 2007-06-12 2007-11 /pmc/articles/PMC2117333/ /pubmed/17563885 http://dx.doi.org/10.1007/s00216-007-1357-1 Text en © Springer-Verlag 2007
spellingShingle Original Paper
Mol, Hans G. J.
Rooseboom, Astrid
van Dam, Ruud
Roding, Marleen
Arondeus, Karin
Sunarto, Suryati
Modification and re-validation of the ethyl acetate-based multi-residue method for pesticides in produce
title Modification and re-validation of the ethyl acetate-based multi-residue method for pesticides in produce
title_full Modification and re-validation of the ethyl acetate-based multi-residue method for pesticides in produce
title_fullStr Modification and re-validation of the ethyl acetate-based multi-residue method for pesticides in produce
title_full_unstemmed Modification and re-validation of the ethyl acetate-based multi-residue method for pesticides in produce
title_short Modification and re-validation of the ethyl acetate-based multi-residue method for pesticides in produce
title_sort modification and re-validation of the ethyl acetate-based multi-residue method for pesticides in produce
topic Original Paper
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2117333/
https://www.ncbi.nlm.nih.gov/pubmed/17563885
http://dx.doi.org/10.1007/s00216-007-1357-1
work_keys_str_mv AT molhansgj modificationandrevalidationoftheethylacetatebasedmultiresiduemethodforpesticidesinproduce
AT rooseboomastrid modificationandrevalidationoftheethylacetatebasedmultiresiduemethodforpesticidesinproduce
AT vandamruud modificationandrevalidationoftheethylacetatebasedmultiresiduemethodforpesticidesinproduce
AT rodingmarleen modificationandrevalidationoftheethylacetatebasedmultiresiduemethodforpesticidesinproduce
AT arondeuskarin modificationandrevalidationoftheethylacetatebasedmultiresiduemethodforpesticidesinproduce
AT sunartosuryati modificationandrevalidationoftheethylacetatebasedmultiresiduemethodforpesticidesinproduce