Cargando…
Thymic emigration revisited
Conventional αβ T cell precursors undergo positive selection in the thymic cortex. When this is successful, they migrate to the medulla and are exposed to tissue-specific antigens (TSA) for purposes of central tolerance, and they undergo maturation to become functionally responsive T cells. It is co...
Autores principales: | , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
The Rockefeller University Press
2007
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2118501/ https://www.ncbi.nlm.nih.gov/pubmed/17908937 http://dx.doi.org/10.1084/jem.20070601 |
Sumario: | Conventional αβ T cell precursors undergo positive selection in the thymic cortex. When this is successful, they migrate to the medulla and are exposed to tissue-specific antigens (TSA) for purposes of central tolerance, and they undergo maturation to become functionally responsive T cells. It is commonly understood that thymocytes spend up to 2 wk in the medulla undergoing these final maturation steps before emigrating to peripheral lymphoid tissues. In addition, emigration is thought to occur via a stochastic mechanism whereby some progenitors leave early and others leave late—a so-called “lucky dip” process. However, recent research has revealed that medullary thymocytes are a heterogeneous mix of naive αβ T cell precursors, memory T cells, natural killer T cells, and regulatory T cells. Given this, we revisited the question of how long it takes naive αβ T cell precursors to emigrate. We combined the following three approaches to study this question: BrdU labeling, intrathymic injection of a cellular tag, and RAG2p-GFP reporter mice. We established that, on average, naive αβ T cell precursors emigrate only 4–5 d after becoming single-positive (SP) thymocytes. Furthermore, emigration occurs via a strict “conveyor belt” mechanism, where the oldest thymocytes leave first. |
---|