Cargando…
De novo DNA methyltransferase is essential for self-renewal, but not for differentiation, in hematopoietic stem cells
DNA methylation is an epigenetic modification essential for development. The DNA methyltransferases Dnmt3a and Dnmt3b execute de novo DNA methylation in gastrulating embryos and differentiating germline cells. It has been assumed that these enzymes generally play a role in regulating cell differenti...
Autores principales: | , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
The Rockefeller University Press
2007
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2118548/ https://www.ncbi.nlm.nih.gov/pubmed/17420264 http://dx.doi.org/10.1084/jem.20060750 |
_version_ | 1782141051854651392 |
---|---|
author | Tadokoro, Yuko Ema, Hideo Okano, Masaki Li, En Nakauchi, Hiromitsu |
author_facet | Tadokoro, Yuko Ema, Hideo Okano, Masaki Li, En Nakauchi, Hiromitsu |
author_sort | Tadokoro, Yuko |
collection | PubMed |
description | DNA methylation is an epigenetic modification essential for development. The DNA methyltransferases Dnmt3a and Dnmt3b execute de novo DNA methylation in gastrulating embryos and differentiating germline cells. It has been assumed that these enzymes generally play a role in regulating cell differentiation. To test this hypothesis, we examined the role of Dnmt3a and Dnmt3b in adult stem cells. CD34(−/low), c-Kit(+), Sca-1(+), lineage marker(−) (CD34(−) KSL) cells, a fraction of mouse bone marrow cells highly enriched in hematopoietic stem cells (HSCs), expressed both Dnmt3a and Dnmt3b. Using retroviral Cre gene transduction, we conditionally disrupted Dnmt3a, Dnmt3b, or both Dnmt3a and Dnmt3b (Dnmt3a/Dnmt3b) in CD34(−) KSL cells purified from mice in which the functional domains of these genes are flanked by two loxP sites. We found that Dnmt3a and Dnmt3b function as de novo DNA methyltransferases during differentiation of hematopoietic cells. Unexpectedly, in vitro colony assays and in vivo transplantation assays showed that both myeloid and lymphoid lineage differentiation potentials were maintained in Dnmt3a-, Dnmt3b-, and Dnmt3a/Dnmt3b-deficient HSCs. However, Dnmt3a/Dnmt3b-deficient HSCs, but not Dnmt3a- or Dnmt3b-deficient HSCs, were incapable of long-term reconstitution in transplantation assays. These findings establish a critical role for DNA methylation by Dnmt3a and Dnmt3b in HSC self-renewal. |
format | Text |
id | pubmed-2118548 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2007 |
publisher | The Rockefeller University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-21185482007-12-13 De novo DNA methyltransferase is essential for self-renewal, but not for differentiation, in hematopoietic stem cells Tadokoro, Yuko Ema, Hideo Okano, Masaki Li, En Nakauchi, Hiromitsu J Exp Med Brief Definitive Reports DNA methylation is an epigenetic modification essential for development. The DNA methyltransferases Dnmt3a and Dnmt3b execute de novo DNA methylation in gastrulating embryos and differentiating germline cells. It has been assumed that these enzymes generally play a role in regulating cell differentiation. To test this hypothesis, we examined the role of Dnmt3a and Dnmt3b in adult stem cells. CD34(−/low), c-Kit(+), Sca-1(+), lineage marker(−) (CD34(−) KSL) cells, a fraction of mouse bone marrow cells highly enriched in hematopoietic stem cells (HSCs), expressed both Dnmt3a and Dnmt3b. Using retroviral Cre gene transduction, we conditionally disrupted Dnmt3a, Dnmt3b, or both Dnmt3a and Dnmt3b (Dnmt3a/Dnmt3b) in CD34(−) KSL cells purified from mice in which the functional domains of these genes are flanked by two loxP sites. We found that Dnmt3a and Dnmt3b function as de novo DNA methyltransferases during differentiation of hematopoietic cells. Unexpectedly, in vitro colony assays and in vivo transplantation assays showed that both myeloid and lymphoid lineage differentiation potentials were maintained in Dnmt3a-, Dnmt3b-, and Dnmt3a/Dnmt3b-deficient HSCs. However, Dnmt3a/Dnmt3b-deficient HSCs, but not Dnmt3a- or Dnmt3b-deficient HSCs, were incapable of long-term reconstitution in transplantation assays. These findings establish a critical role for DNA methylation by Dnmt3a and Dnmt3b in HSC self-renewal. The Rockefeller University Press 2007-04-16 /pmc/articles/PMC2118548/ /pubmed/17420264 http://dx.doi.org/10.1084/jem.20060750 Text en Copyright © 2007, The Rockefeller University Press This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/). |
spellingShingle | Brief Definitive Reports Tadokoro, Yuko Ema, Hideo Okano, Masaki Li, En Nakauchi, Hiromitsu De novo DNA methyltransferase is essential for self-renewal, but not for differentiation, in hematopoietic stem cells |
title | De novo DNA methyltransferase is essential for self-renewal, but not for differentiation, in hematopoietic stem cells |
title_full | De novo DNA methyltransferase is essential for self-renewal, but not for differentiation, in hematopoietic stem cells |
title_fullStr | De novo DNA methyltransferase is essential for self-renewal, but not for differentiation, in hematopoietic stem cells |
title_full_unstemmed | De novo DNA methyltransferase is essential for self-renewal, but not for differentiation, in hematopoietic stem cells |
title_short | De novo DNA methyltransferase is essential for self-renewal, but not for differentiation, in hematopoietic stem cells |
title_sort | de novo dna methyltransferase is essential for self-renewal, but not for differentiation, in hematopoietic stem cells |
topic | Brief Definitive Reports |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2118548/ https://www.ncbi.nlm.nih.gov/pubmed/17420264 http://dx.doi.org/10.1084/jem.20060750 |
work_keys_str_mv | AT tadokoroyuko denovodnamethyltransferaseisessentialforselfrenewalbutnotfordifferentiationinhematopoieticstemcells AT emahideo denovodnamethyltransferaseisessentialforselfrenewalbutnotfordifferentiationinhematopoieticstemcells AT okanomasaki denovodnamethyltransferaseisessentialforselfrenewalbutnotfordifferentiationinhematopoieticstemcells AT lien denovodnamethyltransferaseisessentialforselfrenewalbutnotfordifferentiationinhematopoieticstemcells AT nakauchihiromitsu denovodnamethyltransferaseisessentialforselfrenewalbutnotfordifferentiationinhematopoieticstemcells |