Cargando…
New markers for murine memory B cells that define mutated and unmutated subsets
The study of murine memory B cells has been limited by small cell numbers and the lack of a definitive marker. We have addressed some of these difficulties with hapten-specific transgenic (Tg) mouse models that yield relatively large numbers of antigen-specific memory B cells upon immunization. Usin...
Autores principales: | , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
The Rockefeller University Press
2007
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2118690/ https://www.ncbi.nlm.nih.gov/pubmed/17698588 http://dx.doi.org/10.1084/jem.20062571 |
Sumario: | The study of murine memory B cells has been limited by small cell numbers and the lack of a definitive marker. We have addressed some of these difficulties with hapten-specific transgenic (Tg) mouse models that yield relatively large numbers of antigen-specific memory B cells upon immunization. Using these models, along with a 5-bromo-2′-deoxyuridine (BrdU) pulse-label strategy, we compared memory cells to their naive precursors in a comprehensive flow cytometric survey, thus revealing several new murine memory B cell markers. Most interestingly, memory cells were phenotypically heterogeneous. Particularly surprising was the finding of an unmutated memory B cell subset identified by the expression of CD80 and CD35. We confirmed these findings in an analogous V region knock-in mouse and/or in non-Tg mice. There also was anatomic heterogeneity, with BrdU(+) memory cells residing not just in the marginal zone, as had been thought, but also in splenic follicles. These studies impact the current understanding of murine memory B cells by identifying new phenotypes and by challenging assumptions about the location and V region mutation status of memory cells. The apparent heterogeneity in the memory compartment implies either different origins and/or different functions, which we discuss. |
---|