Cargando…

Membrane cofactor protein of the complement system: alternative splicing of serine/threonine/proline-rich exons and cytoplasmic tails produces multiple isoforms that correlate with protein phenotype

Membrane cofactor protein (MCP) is a complement regulatory protein that is expressed on human cells and cell lines as two relatively broad species with Mr of 58,000-68,000 and 48,000-56,000. The structure of a previously reported cDNA clone indicated that MCP was a type 1 membrane glycoprotein and a...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1991
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2118878/
https://www.ncbi.nlm.nih.gov/pubmed/1711570
_version_ 1782141128863121408
collection PubMed
description Membrane cofactor protein (MCP) is a complement regulatory protein that is expressed on human cells and cell lines as two relatively broad species with Mr of 58,000-68,000 and 48,000-56,000. The structure of a previously reported cDNA clone indicated that MCP was a type 1 membrane glycoprotein and a member of the regulators of complement activation gene/protein cluster. However, it did not provide an explanation for the unusual phenotypic pattern of MCP. Therefore, in parallel with an analysis of the gene, additional cDNAs were cloned and characterized. Six different MCP cDNA classes were identified. All encode the same 5' untranslated signal peptide, four SCRs, transmembrane domain, and basic amino acid anchor. However, they differ in the length and composition of an extracellular serine/threonine/proline (STP)-rich area, a site of heavy O-glycosylation, and cytoplasmic tail. Analysis of the MCP gene demonstrated that the variation in cDNA structure was a result of alternative splicing. Peripheral blood cells and cell lines predominantly expressed four of the six isoforms. These varied by the presence or absence of an STP-rich segment of 15 amino acids (STPB) and by the use of one of two cytoplasmic domains. Analysis by polymerase chain reaction, Northern blots, and transfection indicated that the predominance of MCP cDNA isoforms with STPB correlated with the high molecular weight protein phenotype, while the predominance of isoforms without STPB correlated with the lower molecular weight phenotype. The expression in a single cell of four distinct protein species with variable STP-rich regions and cytoplasmic tails represents an interesting example of the use of alternative splicing to provide variability in a mammalian protein.
format Text
id pubmed-2118878
institution National Center for Biotechnology Information
language English
publishDate 1991
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-21188782008-04-17 Membrane cofactor protein of the complement system: alternative splicing of serine/threonine/proline-rich exons and cytoplasmic tails produces multiple isoforms that correlate with protein phenotype J Exp Med Articles Membrane cofactor protein (MCP) is a complement regulatory protein that is expressed on human cells and cell lines as two relatively broad species with Mr of 58,000-68,000 and 48,000-56,000. The structure of a previously reported cDNA clone indicated that MCP was a type 1 membrane glycoprotein and a member of the regulators of complement activation gene/protein cluster. However, it did not provide an explanation for the unusual phenotypic pattern of MCP. Therefore, in parallel with an analysis of the gene, additional cDNAs were cloned and characterized. Six different MCP cDNA classes were identified. All encode the same 5' untranslated signal peptide, four SCRs, transmembrane domain, and basic amino acid anchor. However, they differ in the length and composition of an extracellular serine/threonine/proline (STP)-rich area, a site of heavy O-glycosylation, and cytoplasmic tail. Analysis of the MCP gene demonstrated that the variation in cDNA structure was a result of alternative splicing. Peripheral blood cells and cell lines predominantly expressed four of the six isoforms. These varied by the presence or absence of an STP-rich segment of 15 amino acids (STPB) and by the use of one of two cytoplasmic domains. Analysis by polymerase chain reaction, Northern blots, and transfection indicated that the predominance of MCP cDNA isoforms with STPB correlated with the high molecular weight protein phenotype, while the predominance of isoforms without STPB correlated with the lower molecular weight phenotype. The expression in a single cell of four distinct protein species with variable STP-rich regions and cytoplasmic tails represents an interesting example of the use of alternative splicing to provide variability in a mammalian protein. The Rockefeller University Press 1991-07-01 /pmc/articles/PMC2118878/ /pubmed/1711570 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
Membrane cofactor protein of the complement system: alternative splicing of serine/threonine/proline-rich exons and cytoplasmic tails produces multiple isoforms that correlate with protein phenotype
title Membrane cofactor protein of the complement system: alternative splicing of serine/threonine/proline-rich exons and cytoplasmic tails produces multiple isoforms that correlate with protein phenotype
title_full Membrane cofactor protein of the complement system: alternative splicing of serine/threonine/proline-rich exons and cytoplasmic tails produces multiple isoforms that correlate with protein phenotype
title_fullStr Membrane cofactor protein of the complement system: alternative splicing of serine/threonine/proline-rich exons and cytoplasmic tails produces multiple isoforms that correlate with protein phenotype
title_full_unstemmed Membrane cofactor protein of the complement system: alternative splicing of serine/threonine/proline-rich exons and cytoplasmic tails produces multiple isoforms that correlate with protein phenotype
title_short Membrane cofactor protein of the complement system: alternative splicing of serine/threonine/proline-rich exons and cytoplasmic tails produces multiple isoforms that correlate with protein phenotype
title_sort membrane cofactor protein of the complement system: alternative splicing of serine/threonine/proline-rich exons and cytoplasmic tails produces multiple isoforms that correlate with protein phenotype
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2118878/
https://www.ncbi.nlm.nih.gov/pubmed/1711570