Cargando…

Nerve growth factor induces development of connective tissue-type mast cells in vitro from murine bone marrow cells

The effect of nerve growth factor (NGF) on proliferation/differentiation of mast cells was investigated in vitro. Although NGF alone neither supported colony formation of bone marrow- derived cultured mast cells (BMCMC) nor induced development of mast cell colonies from nonadherent bone marrow cells...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1991
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2118882/
https://www.ncbi.nlm.nih.gov/pubmed/1711569
_version_ 1782141129795305472
collection PubMed
description The effect of nerve growth factor (NGF) on proliferation/differentiation of mast cells was investigated in vitro. Although NGF alone neither supported colony formation of bone marrow- derived cultured mast cells (BMCMC) nor induced development of mast cell colonies from nonadherent bone marrow cells (NBMC), addition of NGF to the suboptimal dose of interleukin 3 (IL-3) significantly increased the numbers of mast cell colonies produced by BMCMC or NBMC in methylcellulose. When stimulated by IL-3 alone, cells in mast cell colonies were not stained by berberine sulfate, a fluorescent dye. In contrast, mast cells developing in methylcellulose cultures obtaining both IL-3 and NGF were stained by berberine sulfate. The fluorescence was abolished by the treatment of heparinase but not of chondroitinase ABC, suggesting that mast cells stimulated by IL-3 and NGF produced and stored heparin proteoglycan. The histamine content of BMCMC maintained by IL-3 was also increased by addition of NGF. Since BMCMC showed mucosal mast cell-like phenotype, NGF appeared to induce the phenotypic change to connective tissue-type mast cells (CTMC). In the culture containing BMCMC, 3T3 fibroblasts, and IL-3, the phenotypic change of BMCMC to CTMC was observed as well. Since NGF was detected in this coculture and since addition of anti-NGF monoclonal antibody suppressed the phenotypic change, NGF produced by fibroblasts appeared to induce the phenotypic change. Neither BMCMC alone nor IL-3 alone increased the concentration of NGF. Therefore, there is a possibility that BMCMC stimulated by IL-3 may induce the production and/or release of NGF by fibroblasts.
format Text
id pubmed-2118882
institution National Center for Biotechnology Information
language English
publishDate 1991
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-21188822008-04-17 Nerve growth factor induces development of connective tissue-type mast cells in vitro from murine bone marrow cells J Exp Med Articles The effect of nerve growth factor (NGF) on proliferation/differentiation of mast cells was investigated in vitro. Although NGF alone neither supported colony formation of bone marrow- derived cultured mast cells (BMCMC) nor induced development of mast cell colonies from nonadherent bone marrow cells (NBMC), addition of NGF to the suboptimal dose of interleukin 3 (IL-3) significantly increased the numbers of mast cell colonies produced by BMCMC or NBMC in methylcellulose. When stimulated by IL-3 alone, cells in mast cell colonies were not stained by berberine sulfate, a fluorescent dye. In contrast, mast cells developing in methylcellulose cultures obtaining both IL-3 and NGF were stained by berberine sulfate. The fluorescence was abolished by the treatment of heparinase but not of chondroitinase ABC, suggesting that mast cells stimulated by IL-3 and NGF produced and stored heparin proteoglycan. The histamine content of BMCMC maintained by IL-3 was also increased by addition of NGF. Since BMCMC showed mucosal mast cell-like phenotype, NGF appeared to induce the phenotypic change to connective tissue-type mast cells (CTMC). In the culture containing BMCMC, 3T3 fibroblasts, and IL-3, the phenotypic change of BMCMC to CTMC was observed as well. Since NGF was detected in this coculture and since addition of anti-NGF monoclonal antibody suppressed the phenotypic change, NGF produced by fibroblasts appeared to induce the phenotypic change. Neither BMCMC alone nor IL-3 alone increased the concentration of NGF. Therefore, there is a possibility that BMCMC stimulated by IL-3 may induce the production and/or release of NGF by fibroblasts. The Rockefeller University Press 1991-07-01 /pmc/articles/PMC2118882/ /pubmed/1711569 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
Nerve growth factor induces development of connective tissue-type mast cells in vitro from murine bone marrow cells
title Nerve growth factor induces development of connective tissue-type mast cells in vitro from murine bone marrow cells
title_full Nerve growth factor induces development of connective tissue-type mast cells in vitro from murine bone marrow cells
title_fullStr Nerve growth factor induces development of connective tissue-type mast cells in vitro from murine bone marrow cells
title_full_unstemmed Nerve growth factor induces development of connective tissue-type mast cells in vitro from murine bone marrow cells
title_short Nerve growth factor induces development of connective tissue-type mast cells in vitro from murine bone marrow cells
title_sort nerve growth factor induces development of connective tissue-type mast cells in vitro from murine bone marrow cells
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2118882/
https://www.ncbi.nlm.nih.gov/pubmed/1711569