Cargando…

Antibody recognition of an immunogenic influenza hemagglutinin-human leukocyte antigen class II complex

The A/Japan/57 influenza hemagglutin (HA) peptide HA 128-145, when bound by human histocompatibility leukocyte antigen-DRw11 cells, is recognized by the human CD4+ T cell clone V1. A rabbit antiserum has been raised against HA 128-145 which recognizes not only the free peptide, but also the HA 128-1...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1991
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2118883/
https://www.ncbi.nlm.nih.gov/pubmed/2056278
Descripción
Sumario:The A/Japan/57 influenza hemagglutin (HA) peptide HA 128-145, when bound by human histocompatibility leukocyte antigen-DRw11 cells, is recognized by the human CD4+ T cell clone V1. A rabbit antiserum has been raised against HA 128-145 which recognizes not only the free peptide, but also the HA 128-145/DRw11 complex on a solid matrix, in solution, or on the surface of viable cells. The detection of these complexes on viable cells was shown to be class II specific, DRw11 restricted, and commensurate with the level of DRw11 expression. The identity of DRw11 as the cell surface molecule binding HA 128-145 was confirmed by immunoprecipitation, sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and tryptic peptide mapping. Using this antiserum HA 128-145/DRw11 complexes could be detected on the cell surface as soon as 30 min after the peptide was added, and increased up to 24 h. Dissociation kinetics showed these complexes were long-lived, with a half-life of approximately 14 h. This anti-HA peptide antiserum represents the first direct means of studying antigenic peptide-human leukocyte antigen class II complexes on the surface of living cells without the addition of a non-amino acid moiety to the peptide. The properties of this antiserum thus provide the potential to study naturally processed antigenic peptides as well as the mechanism of processing itself in a physiologically relevant system.