Cargando…

In vitro proliferation and cloning of CD3- CD16+ cells from human thymocyte precursors

Purified CD3-4- thymocytes were obtained by depletion of CD3+ and CD4+ cells from fresh thymocyte suspensions. 5-15% of these cells were found to express CD16 antigen, while other natural killer (NK) cell markers were virtually absent. Double fluorescence analysis revealed that 20- 40% of thymic CD1...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1991
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2118888/
https://www.ncbi.nlm.nih.gov/pubmed/1711562
_version_ 1782141131192008704
collection PubMed
description Purified CD3-4- thymocytes were obtained by depletion of CD3+ and CD4+ cells from fresh thymocyte suspensions. 5-15% of these cells were found to express CD16 antigen, while other natural killer (NK) cell markers were virtually absent. Double fluorescence analysis revealed that 20- 40% of thymic CD16+ cells coexpressed CD1, while approximately half were cyCD3+. When cultured in the presence of peripheral blood lymphocytes and H9 leukemia cell line as a source of irradiated feeder cells and interleukin 2 (IL-2), CD3-4- thymocytes underwent extensive proliferation. In addition, after 1-2 wk of culture, 30-50% of these cells were found to express CD16 surface antigen. Cloning under limiting dilution conditions of either CD3-4- or CD3-4-16- thymocytes in the presence of irradiated H9 cells resulted in large proportions (approximately 50%) of CD16+ clones. On the basis of the expression of surface CD16 and/or cyCD3 antigen, clones could be grouped in the following subsets: CD16+ cyCD3+; CD16+ cyCD3-; CD16- cyCD3+; and CD16- cyCD3-. All clones expressed CD56 surface antigen, displayed a strong cytolytic activity against NK sensitive (K562) and NK-resistant (M14) target cells, and produced IFN-gamma and tumor necrosis factor, but not IL-2. Similar to peripheral NK cells, thymic CD16+ cells expressed transcripts for CD16 and for CD3 epsilon (Biassoni, R., S. Ferrini, I. Prigione, A. Moretta, and E.O. Long, 1988. J. Immunol. 140:1685.) and zeta chains (Anderson, P., M. Caligiuri, J. Ritz, and S.F. Schlossman. 1989. Nature [Lond.]. 341:159). Therefore, it appears that cells that are phenotypically and functionally similar to CD3- CD16+ NK cells may arise from immature thymocytes.
format Text
id pubmed-2118888
institution National Center for Biotechnology Information
language English
publishDate 1991
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-21188882008-04-17 In vitro proliferation and cloning of CD3- CD16+ cells from human thymocyte precursors J Exp Med Articles Purified CD3-4- thymocytes were obtained by depletion of CD3+ and CD4+ cells from fresh thymocyte suspensions. 5-15% of these cells were found to express CD16 antigen, while other natural killer (NK) cell markers were virtually absent. Double fluorescence analysis revealed that 20- 40% of thymic CD16+ cells coexpressed CD1, while approximately half were cyCD3+. When cultured in the presence of peripheral blood lymphocytes and H9 leukemia cell line as a source of irradiated feeder cells and interleukin 2 (IL-2), CD3-4- thymocytes underwent extensive proliferation. In addition, after 1-2 wk of culture, 30-50% of these cells were found to express CD16 surface antigen. Cloning under limiting dilution conditions of either CD3-4- or CD3-4-16- thymocytes in the presence of irradiated H9 cells resulted in large proportions (approximately 50%) of CD16+ clones. On the basis of the expression of surface CD16 and/or cyCD3 antigen, clones could be grouped in the following subsets: CD16+ cyCD3+; CD16+ cyCD3-; CD16- cyCD3+; and CD16- cyCD3-. All clones expressed CD56 surface antigen, displayed a strong cytolytic activity against NK sensitive (K562) and NK-resistant (M14) target cells, and produced IFN-gamma and tumor necrosis factor, but not IL-2. Similar to peripheral NK cells, thymic CD16+ cells expressed transcripts for CD16 and for CD3 epsilon (Biassoni, R., S. Ferrini, I. Prigione, A. Moretta, and E.O. Long, 1988. J. Immunol. 140:1685.) and zeta chains (Anderson, P., M. Caligiuri, J. Ritz, and S.F. Schlossman. 1989. Nature [Lond.]. 341:159). Therefore, it appears that cells that are phenotypically and functionally similar to CD3- CD16+ NK cells may arise from immature thymocytes. The Rockefeller University Press 1991-07-01 /pmc/articles/PMC2118888/ /pubmed/1711562 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
In vitro proliferation and cloning of CD3- CD16+ cells from human thymocyte precursors
title In vitro proliferation and cloning of CD3- CD16+ cells from human thymocyte precursors
title_full In vitro proliferation and cloning of CD3- CD16+ cells from human thymocyte precursors
title_fullStr In vitro proliferation and cloning of CD3- CD16+ cells from human thymocyte precursors
title_full_unstemmed In vitro proliferation and cloning of CD3- CD16+ cells from human thymocyte precursors
title_short In vitro proliferation and cloning of CD3- CD16+ cells from human thymocyte precursors
title_sort in vitro proliferation and cloning of cd3- cd16+ cells from human thymocyte precursors
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2118888/
https://www.ncbi.nlm.nih.gov/pubmed/1711562