Cargando…
Regulation by interferon alpha of immunoglobulin isotype selection and lymphokine production in mice
Antigens and infectious agents that stimulate interferon alpha(IFN- alpha) production in mice induce antibody responses that are predominantly of the immunoglobulin (Ig)G2a isotype and contain little or no IgE. This suggested the possibility that IFN-alpha might have a role in directing Ig isotype s...
Formato: | Texto |
---|---|
Lenguaje: | English |
Publicado: |
The Rockefeller University Press
1991
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2118981/ https://www.ncbi.nlm.nih.gov/pubmed/1940796 |
_version_ | 1782141152985612288 |
---|---|
collection | PubMed |
description | Antigens and infectious agents that stimulate interferon alpha(IFN- alpha) production in mice induce antibody responses that are predominantly of the immunoglobulin (Ig)G2a isotype and contain little or no IgE. This suggested the possibility that IFN-alpha might have a role in directing Ig isotype selection. Consistent with this possibility, we have found that injection of mice with recombinant mouse IFN-alpha suppresses IgE secretion, enhances IgG2a secretion, and has no independent effect on IgG1 secretion in mice stimulated with a foreign anti-IgD antibody. Injection of mice with polyinosinic acid.polycytidylic acid (poly I.C), an inducer of macrophage IFN-alpha production, also suppresses the anti-IgD antibody-induced IgE response and stimulates the IgG2a response; these effects are blocked by a sheep antibody that neutralizes mouse IFN-alpha/beta. Both recombinant IFN- alpha and poly I.C have maximum IgE suppressive and IgG2a stimulatory effects when injected early in the anti-IgD antibody-induced immune response. Addition of IFN-alpha to mouse B cells cultured with lipopolysaccharide (LPS) + interleukin 4 (IL-4) suppresses both IgG1 and IgE production, but much less potently than IFN-gamma. IFN-alpha suppresses anti-IgD antibody-induced increases in the level of splenic IL-4 mRNA, but enhances the anti-IgD antibody-induced increase in the splenic level of IFN-gamma mRNA. These results are consistent with the effect of IFN-alpha on Ig isotype expression in mice, as IL-4 stimulates IgE and suppresses IgG2a secretion while IFN-gamma exerts opposite effects. These observations suggest that antigen presenting cells, by secreting IFN-alpha early in the course of an immune response, can influence the nature of that response both through direct effects on B cells and by influencing the differentiation of T cells. |
format | Text |
id | pubmed-2118981 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 1991 |
publisher | The Rockefeller University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-21189812008-04-17 Regulation by interferon alpha of immunoglobulin isotype selection and lymphokine production in mice J Exp Med Articles Antigens and infectious agents that stimulate interferon alpha(IFN- alpha) production in mice induce antibody responses that are predominantly of the immunoglobulin (Ig)G2a isotype and contain little or no IgE. This suggested the possibility that IFN-alpha might have a role in directing Ig isotype selection. Consistent with this possibility, we have found that injection of mice with recombinant mouse IFN-alpha suppresses IgE secretion, enhances IgG2a secretion, and has no independent effect on IgG1 secretion in mice stimulated with a foreign anti-IgD antibody. Injection of mice with polyinosinic acid.polycytidylic acid (poly I.C), an inducer of macrophage IFN-alpha production, also suppresses the anti-IgD antibody-induced IgE response and stimulates the IgG2a response; these effects are blocked by a sheep antibody that neutralizes mouse IFN-alpha/beta. Both recombinant IFN- alpha and poly I.C have maximum IgE suppressive and IgG2a stimulatory effects when injected early in the anti-IgD antibody-induced immune response. Addition of IFN-alpha to mouse B cells cultured with lipopolysaccharide (LPS) + interleukin 4 (IL-4) suppresses both IgG1 and IgE production, but much less potently than IFN-gamma. IFN-alpha suppresses anti-IgD antibody-induced increases in the level of splenic IL-4 mRNA, but enhances the anti-IgD antibody-induced increase in the splenic level of IFN-gamma mRNA. These results are consistent with the effect of IFN-alpha on Ig isotype expression in mice, as IL-4 stimulates IgE and suppresses IgG2a secretion while IFN-gamma exerts opposite effects. These observations suggest that antigen presenting cells, by secreting IFN-alpha early in the course of an immune response, can influence the nature of that response both through direct effects on B cells and by influencing the differentiation of T cells. The Rockefeller University Press 1991-11-01 /pmc/articles/PMC2118981/ /pubmed/1940796 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/). |
spellingShingle | Articles Regulation by interferon alpha of immunoglobulin isotype selection and lymphokine production in mice |
title | Regulation by interferon alpha of immunoglobulin isotype selection and lymphokine production in mice |
title_full | Regulation by interferon alpha of immunoglobulin isotype selection and lymphokine production in mice |
title_fullStr | Regulation by interferon alpha of immunoglobulin isotype selection and lymphokine production in mice |
title_full_unstemmed | Regulation by interferon alpha of immunoglobulin isotype selection and lymphokine production in mice |
title_short | Regulation by interferon alpha of immunoglobulin isotype selection and lymphokine production in mice |
title_sort | regulation by interferon alpha of immunoglobulin isotype selection and lymphokine production in mice |
topic | Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2118981/ https://www.ncbi.nlm.nih.gov/pubmed/1940796 |