Cargando…
A gene required for class II-restricted antigen presentation maps to the major histocompatibility complex
We have previously described a set of mutants (16.23-selected mutants) of a B lymphoblastoid cell line that are defective in the presentation of intact proteins to class II-restricted T cells, but effectively present immunogenic peptides. The mutations in these mutants are recessive in somatic cell...
Formato: | Texto |
---|---|
Lenguaje: | English |
Publicado: |
The Rockefeller University Press
1991
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2119029/ https://www.ncbi.nlm.nih.gov/pubmed/1744588 |
_version_ | 1782141164204326912 |
---|---|
collection | PubMed |
description | We have previously described a set of mutants (16.23-selected mutants) of a B lymphoblastoid cell line that are defective in the presentation of intact proteins to class II-restricted T cells, but effectively present immunogenic peptides. The mutations in these mutants are recessive in somatic cell hybrids and are not in Class II structural genes. Here, we report on a unique mutant, 5.2.4, in which a similar defect in class II-restricted antigen presentation has occurred in association with a one-megabase homozygous deletion in the class II region of the major histocompatibility complex (MHC). The defects in class II presentation among three of the 16.23-selected mutants, and between these mutants and 5.2.4, are noncomplementary in somatic cell hybrids. This suggests that the class II presentation-defective phenotype in all four mutants results from lesions in a single MHC- linked gene, a conclusion strengthened by the finding that in a hybrid made with a second, unrelated MHC deletion mutant, T2, the class II presentation defect in a 16.23-selected mutant is also not complemented. Mutant 5.2.4, in addition to its class II presentation defect, is also defective in surface expression of MHC class I molecules, most likely because its deletion encompasses the peptide supply factor 1 gene, whose function is known to be required for normal abundance of cell surface class I molecules. However, the surface abundance of class I molecules is normal in the 16.23-selected mutants, suggesting that the lesions affecting class I surface abundance and class II presentation result from mutations in different genes. |
format | Text |
id | pubmed-2119029 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 1991 |
publisher | The Rockefeller University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-21190292008-04-17 A gene required for class II-restricted antigen presentation maps to the major histocompatibility complex J Exp Med Articles We have previously described a set of mutants (16.23-selected mutants) of a B lymphoblastoid cell line that are defective in the presentation of intact proteins to class II-restricted T cells, but effectively present immunogenic peptides. The mutations in these mutants are recessive in somatic cell hybrids and are not in Class II structural genes. Here, we report on a unique mutant, 5.2.4, in which a similar defect in class II-restricted antigen presentation has occurred in association with a one-megabase homozygous deletion in the class II region of the major histocompatibility complex (MHC). The defects in class II presentation among three of the 16.23-selected mutants, and between these mutants and 5.2.4, are noncomplementary in somatic cell hybrids. This suggests that the class II presentation-defective phenotype in all four mutants results from lesions in a single MHC- linked gene, a conclusion strengthened by the finding that in a hybrid made with a second, unrelated MHC deletion mutant, T2, the class II presentation defect in a 16.23-selected mutant is also not complemented. Mutant 5.2.4, in addition to its class II presentation defect, is also defective in surface expression of MHC class I molecules, most likely because its deletion encompasses the peptide supply factor 1 gene, whose function is known to be required for normal abundance of cell surface class I molecules. However, the surface abundance of class I molecules is normal in the 16.23-selected mutants, suggesting that the lesions affecting class I surface abundance and class II presentation result from mutations in different genes. The Rockefeller University Press 1991-12-01 /pmc/articles/PMC2119029/ /pubmed/1744588 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/). |
spellingShingle | Articles A gene required for class II-restricted antigen presentation maps to the major histocompatibility complex |
title | A gene required for class II-restricted antigen presentation maps to the major histocompatibility complex |
title_full | A gene required for class II-restricted antigen presentation maps to the major histocompatibility complex |
title_fullStr | A gene required for class II-restricted antigen presentation maps to the major histocompatibility complex |
title_full_unstemmed | A gene required for class II-restricted antigen presentation maps to the major histocompatibility complex |
title_short | A gene required for class II-restricted antigen presentation maps to the major histocompatibility complex |
title_sort | gene required for class ii-restricted antigen presentation maps to the major histocompatibility complex |
topic | Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2119029/ https://www.ncbi.nlm.nih.gov/pubmed/1744588 |