Cargando…

Differential expression of secretory granule proteases in mouse mast cells exposed to interleukin 3 and c-kit ligand

It is now established that the subclasses of mast cells (MC) that reside in mucosal and serosal environments can be distinguished from one another in terms of their expression of specific secretory granule- localized proteases and proteoglycans. Further, the hematopoietic- and connective tissue-deri...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1992
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2119178/
https://www.ncbi.nlm.nih.gov/pubmed/1372640
_version_ 1782141199129247744
collection PubMed
description It is now established that the subclasses of mast cells (MC) that reside in mucosal and serosal environments can be distinguished from one another in terms of their expression of specific secretory granule- localized proteases and proteoglycans. Further, the hematopoietic- and connective tissue-derived cytokines that regulate expression of the genes that encode these constituents of the granule can now be identified using recently developed gene-specific probes and recombinant cytokines. When bone marrow-derived MC (BMMC) were developed with recombinant interleukin 3 (rIL-3) and maintained with this cytokine in the absence or presence of recombinant c-kit ligand (rKL), they remained safranin-, produced almost no 35S-labeled heparin proteoglycans, and contained greater levels of mouse MC protease (MMCP) -5 mRNA and mast cell carboxypeptidase A (MC-CPA) mRNA than MMCP-6 mRNA. They did not contain MMCP-4 or -2 mRNA, genes expressed late in the differentiation of progenitor cells into serosal and mucosal MCs, respectively. In contrast, BMMC developed with rKL alone or by sequential culture in medium containing rIL-3 followed by rKL expressed high levels of MMCP-4 and -6 mRNA, as well as the transcripts that encode MMCP-5 and MC-CPA. Although rKL-developed BMMC were safranin+ and produced substantial amounts of 35S-labeled heparin proteoglycans, they contained only minimal amounts of histamine and MC-CPA enzymatic activity relative to serosal MC. These are the first studies to characterize the transcriptional granule phenotype of a population of BMMC derived using any recombinant cytokine, to demonstrate a dissociation between histochemical staining and granule maturation, and to demonstrate antagonistic regulation of late expressed protease genes by a cytokine.
format Text
id pubmed-2119178
institution National Center for Biotechnology Information
language English
publishDate 1992
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-21191782008-04-16 Differential expression of secretory granule proteases in mouse mast cells exposed to interleukin 3 and c-kit ligand J Exp Med Articles It is now established that the subclasses of mast cells (MC) that reside in mucosal and serosal environments can be distinguished from one another in terms of their expression of specific secretory granule- localized proteases and proteoglycans. Further, the hematopoietic- and connective tissue-derived cytokines that regulate expression of the genes that encode these constituents of the granule can now be identified using recently developed gene-specific probes and recombinant cytokines. When bone marrow-derived MC (BMMC) were developed with recombinant interleukin 3 (rIL-3) and maintained with this cytokine in the absence or presence of recombinant c-kit ligand (rKL), they remained safranin-, produced almost no 35S-labeled heparin proteoglycans, and contained greater levels of mouse MC protease (MMCP) -5 mRNA and mast cell carboxypeptidase A (MC-CPA) mRNA than MMCP-6 mRNA. They did not contain MMCP-4 or -2 mRNA, genes expressed late in the differentiation of progenitor cells into serosal and mucosal MCs, respectively. In contrast, BMMC developed with rKL alone or by sequential culture in medium containing rIL-3 followed by rKL expressed high levels of MMCP-4 and -6 mRNA, as well as the transcripts that encode MMCP-5 and MC-CPA. Although rKL-developed BMMC were safranin+ and produced substantial amounts of 35S-labeled heparin proteoglycans, they contained only minimal amounts of histamine and MC-CPA enzymatic activity relative to serosal MC. These are the first studies to characterize the transcriptional granule phenotype of a population of BMMC derived using any recombinant cytokine, to demonstrate a dissociation between histochemical staining and granule maturation, and to demonstrate antagonistic regulation of late expressed protease genes by a cytokine. The Rockefeller University Press 1992-04-01 /pmc/articles/PMC2119178/ /pubmed/1372640 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
Differential expression of secretory granule proteases in mouse mast cells exposed to interleukin 3 and c-kit ligand
title Differential expression of secretory granule proteases in mouse mast cells exposed to interleukin 3 and c-kit ligand
title_full Differential expression of secretory granule proteases in mouse mast cells exposed to interleukin 3 and c-kit ligand
title_fullStr Differential expression of secretory granule proteases in mouse mast cells exposed to interleukin 3 and c-kit ligand
title_full_unstemmed Differential expression of secretory granule proteases in mouse mast cells exposed to interleukin 3 and c-kit ligand
title_short Differential expression of secretory granule proteases in mouse mast cells exposed to interleukin 3 and c-kit ligand
title_sort differential expression of secretory granule proteases in mouse mast cells exposed to interleukin 3 and c-kit ligand
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2119178/
https://www.ncbi.nlm.nih.gov/pubmed/1372640