Cargando…

Dithiocarbamates as potent inhibitors of nuclear factor kappa B activation in intact cells

Dithiocarbamates and iron chelators were recently considered for the treatment of AIDS and neurodegenerative diseases. In this study, we show that dithiocarbamates and metal chelators can potently block the activation of nuclear factor kappa B (NF-kappa B), a transcription factor involved in human i...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1992
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2119220/
https://www.ncbi.nlm.nih.gov/pubmed/1314883
_version_ 1782141209126371328
collection PubMed
description Dithiocarbamates and iron chelators were recently considered for the treatment of AIDS and neurodegenerative diseases. In this study, we show that dithiocarbamates and metal chelators can potently block the activation of nuclear factor kappa B (NF-kappa B), a transcription factor involved in human immunodeficiency virus type 1 (HIV-1) expression, signaling, and immediate early gene activation during inflammatory processes. Using cell cultures, the pyrrolidine derivative of dithiocarbamate (PDTC) was investigated in detail. Micromolar amounts of PDTC reversibly suppressed the release of the inhibitory subunit I kappa B from the latent cytoplasmic form of NF-kappa B in cells treated with phorbol ester, interleukin 1, and tumor necrosis factor alpha. Other DNA binding activities and the induction of AP-1 by phorbol ester were not affected. The antioxidant PDTC also blocked the activation of NF-kappa B by bacterial lipopolysaccharide (LPS), suggesting a role of oxygen radicals in the intracellular signaling of LPS. This idea was supported by demonstrating that treatment of pre-B and B cells with LPS induced the production of O2- and H2O2. PDTC prevented specifically the kappa B-dependent transactivation of reporter genes under the control of the HIV-1 long terminal repeat and simian virus 40 enhancer. The results from this study lend further support to the idea that oxygen radicals play an important role in the activation of NF-kappa B and HIV-1.
format Text
id pubmed-2119220
institution National Center for Biotechnology Information
language English
publishDate 1992
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-21192202008-04-16 Dithiocarbamates as potent inhibitors of nuclear factor kappa B activation in intact cells J Exp Med Articles Dithiocarbamates and iron chelators were recently considered for the treatment of AIDS and neurodegenerative diseases. In this study, we show that dithiocarbamates and metal chelators can potently block the activation of nuclear factor kappa B (NF-kappa B), a transcription factor involved in human immunodeficiency virus type 1 (HIV-1) expression, signaling, and immediate early gene activation during inflammatory processes. Using cell cultures, the pyrrolidine derivative of dithiocarbamate (PDTC) was investigated in detail. Micromolar amounts of PDTC reversibly suppressed the release of the inhibitory subunit I kappa B from the latent cytoplasmic form of NF-kappa B in cells treated with phorbol ester, interleukin 1, and tumor necrosis factor alpha. Other DNA binding activities and the induction of AP-1 by phorbol ester were not affected. The antioxidant PDTC also blocked the activation of NF-kappa B by bacterial lipopolysaccharide (LPS), suggesting a role of oxygen radicals in the intracellular signaling of LPS. This idea was supported by demonstrating that treatment of pre-B and B cells with LPS induced the production of O2- and H2O2. PDTC prevented specifically the kappa B-dependent transactivation of reporter genes under the control of the HIV-1 long terminal repeat and simian virus 40 enhancer. The results from this study lend further support to the idea that oxygen radicals play an important role in the activation of NF-kappa B and HIV-1. The Rockefeller University Press 1992-05-01 /pmc/articles/PMC2119220/ /pubmed/1314883 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
Dithiocarbamates as potent inhibitors of nuclear factor kappa B activation in intact cells
title Dithiocarbamates as potent inhibitors of nuclear factor kappa B activation in intact cells
title_full Dithiocarbamates as potent inhibitors of nuclear factor kappa B activation in intact cells
title_fullStr Dithiocarbamates as potent inhibitors of nuclear factor kappa B activation in intact cells
title_full_unstemmed Dithiocarbamates as potent inhibitors of nuclear factor kappa B activation in intact cells
title_short Dithiocarbamates as potent inhibitors of nuclear factor kappa B activation in intact cells
title_sort dithiocarbamates as potent inhibitors of nuclear factor kappa b activation in intact cells
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2119220/
https://www.ncbi.nlm.nih.gov/pubmed/1314883