Cargando…

Negative regulation of interleukin 2 transcription by the glucocorticoid receptor

Glucocorticoid-dependent transcriptional enhancement is known to occur through the interaction of the glucocorticoid receptor (GR) with specific DNA response elements. In contrast, negative regulation of gene expression by this class of hormone is less well understood. Glucocorticoids are potent imm...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1992
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2119221/
https://www.ncbi.nlm.nih.gov/pubmed/1569395
_version_ 1782141209362300928
collection PubMed
description Glucocorticoid-dependent transcriptional enhancement is known to occur through the interaction of the glucocorticoid receptor (GR) with specific DNA response elements. In contrast, negative regulation of gene expression by this class of hormone is less well understood. Glucocorticoids are potent immunosuppressive agents acting primarily by inhibiting T lymphocyte activation and lymphokine production. Interleukin 2 (IL-2) gene expression, a critical early event during T lymphocyte activation, is inhibited in glucocorticoid-sensitive cells by hormone treatment. We have studied the mechanism of this inhibition. In transgenic mice carrying c-myc linked to the IL-2 enhancer, mitogen- induced expression of the transgene is inhibited by concurrent glucocorticoid treatment, while a similar transgene construct driven by three copies of the binding site for nuclear factor of activated T cells is not inhibited. Cotransfection experiments into glucocorticoid- insensitive jurkat cells show that the NH2 terminus of the glucocorticoid receptor is dispensable for inhibition of the IL-2 enhancer but that an intact DNA binding domain, although not necessarily binding to DNA, is required. Hybrid GRs containing the DNA binding domains of either the estrogen receptor (ER) or thyroid receptor, as well as the entire wild-type ER, all function as repressors of the IL-2 enhancer. We have localized the site of inhibition to two sequences located in the proximal half of the enhancer. These sequences bind a similar, if not identical, inducible nuclear factor that has biologic characteristics that distinguish it from AP-1. The mechanism of IL-2 inhibition likely involves direct interactions between the GR and this factor.
format Text
id pubmed-2119221
institution National Center for Biotechnology Information
language English
publishDate 1992
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-21192212008-04-16 Negative regulation of interleukin 2 transcription by the glucocorticoid receptor J Exp Med Articles Glucocorticoid-dependent transcriptional enhancement is known to occur through the interaction of the glucocorticoid receptor (GR) with specific DNA response elements. In contrast, negative regulation of gene expression by this class of hormone is less well understood. Glucocorticoids are potent immunosuppressive agents acting primarily by inhibiting T lymphocyte activation and lymphokine production. Interleukin 2 (IL-2) gene expression, a critical early event during T lymphocyte activation, is inhibited in glucocorticoid-sensitive cells by hormone treatment. We have studied the mechanism of this inhibition. In transgenic mice carrying c-myc linked to the IL-2 enhancer, mitogen- induced expression of the transgene is inhibited by concurrent glucocorticoid treatment, while a similar transgene construct driven by three copies of the binding site for nuclear factor of activated T cells is not inhibited. Cotransfection experiments into glucocorticoid- insensitive jurkat cells show that the NH2 terminus of the glucocorticoid receptor is dispensable for inhibition of the IL-2 enhancer but that an intact DNA binding domain, although not necessarily binding to DNA, is required. Hybrid GRs containing the DNA binding domains of either the estrogen receptor (ER) or thyroid receptor, as well as the entire wild-type ER, all function as repressors of the IL-2 enhancer. We have localized the site of inhibition to two sequences located in the proximal half of the enhancer. These sequences bind a similar, if not identical, inducible nuclear factor that has biologic characteristics that distinguish it from AP-1. The mechanism of IL-2 inhibition likely involves direct interactions between the GR and this factor. The Rockefeller University Press 1992-05-01 /pmc/articles/PMC2119221/ /pubmed/1569395 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
Negative regulation of interleukin 2 transcription by the glucocorticoid receptor
title Negative regulation of interleukin 2 transcription by the glucocorticoid receptor
title_full Negative regulation of interleukin 2 transcription by the glucocorticoid receptor
title_fullStr Negative regulation of interleukin 2 transcription by the glucocorticoid receptor
title_full_unstemmed Negative regulation of interleukin 2 transcription by the glucocorticoid receptor
title_short Negative regulation of interleukin 2 transcription by the glucocorticoid receptor
title_sort negative regulation of interleukin 2 transcription by the glucocorticoid receptor
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2119221/
https://www.ncbi.nlm.nih.gov/pubmed/1569395